Metamath Proof Explorer


Theorem rngodir

Description: Distributive law for the multiplication operation of a ring (right-distributivity). (Contributed by Steve Rodriguez, 9-Sep-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)

Ref Expression
Hypotheses ringi.1 G=1stR
ringi.2 H=2ndR
ringi.3 X=ranG
Assertion rngodir RRingOpsAXBXCXAGBHC=AHCGBHC

Proof

Step Hyp Ref Expression
1 ringi.1 G=1stR
2 ringi.2 H=2ndR
3 ringi.3 X=ranG
4 1 2 3 rngoi RRingOpsGAbelOpH:X×XXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
5 4 simprd RRingOpsxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXxHy=yyHx=y
6 5 simpld RRingOpsxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHz
7 simp3 xHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxGyHz=xHzGyHz
8 7 ralimi zXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzzXxGyHz=xHzGyHz
9 8 2ralimi xXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzxXyXzXxGyHz=xHzGyHz
10 oveq1 x=AxGy=AGy
11 10 oveq1d x=AxGyHz=AGyHz
12 oveq1 x=AxHz=AHz
13 12 oveq1d x=AxHzGyHz=AHzGyHz
14 11 13 eqeq12d x=AxGyHz=xHzGyHzAGyHz=AHzGyHz
15 oveq2 y=BAGy=AGB
16 15 oveq1d y=BAGyHz=AGBHz
17 oveq1 y=ByHz=BHz
18 17 oveq2d y=BAHzGyHz=AHzGBHz
19 16 18 eqeq12d y=BAGyHz=AHzGyHzAGBHz=AHzGBHz
20 oveq2 z=CAGBHz=AGBHC
21 oveq2 z=CAHz=AHC
22 oveq2 z=CBHz=BHC
23 21 22 oveq12d z=CAHzGBHz=AHCGBHC
24 20 23 eqeq12d z=CAGBHz=AHzGBHzAGBHC=AHCGBHC
25 14 19 24 rspc3v AXBXCXxXyXzXxGyHz=xHzGyHzAGBHC=AHCGBHC
26 9 25 syl5 AXBXCXxXyXzXxHyHz=xHyHzxHyGz=xHyGxHzxGyHz=xHzGyHzAGBHC=AHCGBHC
27 6 26 mpan9 RRingOpsAXBXCXAGBHC=AHCGBHC