Metamath Proof Explorer


Theorem rngringbd

Description: A non-unital ring is unital if and only if there is a (two-sided) ideal of the ring which is unital, and the quotient of the ring and the ideal is unital. (Proposed by GL, 12-Feb-2025.) (Contributed by AV, 20-Feb-2025)

Ref Expression
Hypotheses rngringbd.r φRRng
rngringbd.i φI2IdealR
rngringbd.j J=R𝑠I
rngringbd.u φJRing
rngringbd.q Q=R/𝑠R~QGI
Assertion rngringbd φRRingQRing

Proof

Step Hyp Ref Expression
1 rngringbd.r φRRng
2 rngringbd.i φI2IdealR
3 rngringbd.j J=R𝑠I
4 rngringbd.u φJRing
5 rngringbd.q Q=R/𝑠R~QGI
6 1 2 3 4 5 rngringbdlem1 φRRingQRing
7 1 2 3 4 5 rngringbdlem2 φQRingRRing
8 6 7 impbida φRRingQRing