Metamath Proof Explorer


Theorem rpgecl

Description: A number greater than or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Assertion rpgecl A+BABB+

Proof

Step Hyp Ref Expression
1 simp2 A+BABB
2 0red A+BAB0
3 rpre A+A
4 3 3ad2ant1 A+BABA
5 rpgt0 A+0<A
6 5 3ad2ant1 A+BAB0<A
7 simp3 A+BABAB
8 2 4 1 6 7 ltletrd A+BAB0<B
9 elrp B+B0<B
10 1 8 9 sylanbrc A+BABB+