Metamath Proof Explorer


Theorem rr-groth

Description: An equivalent of ax-groth using only simple defined symbols. (Contributed by Rohan Ridenour, 13-Aug-2023)

Ref Expression
Assertion rr-groth yxyzy𝒫zyfwy𝒫zwizvyivvfufiuuw

Proof

Step Hyp Ref Expression
1 gruex yUnivxy
2 df-rex yUnivxyyyUnivxy
3 exancom yyUnivxyyxyyUniv
4 grumnueq Univ=k|lk𝒫lkmnk𝒫lnplqkpqqmrmprrn
5 4 ismnu yVyUnivzy𝒫zyfwy𝒫zwizvyivvfufiuuw
6 5 elv yUnivzy𝒫zyfwy𝒫zwizvyivvfufiuuw
7 6 anbi2i xyyUnivxyzy𝒫zyfwy𝒫zwizvyivvfufiuuw
8 7 exbii yxyyUnivyxyzy𝒫zyfwy𝒫zwizvyivvfufiuuw
9 2 3 8 3bitri yUnivxyyxyzy𝒫zyfwy𝒫zwizvyivvfufiuuw
10 1 9 mpbi yxyzy𝒫zyfwy𝒫zwizvyivvfufiuuw