Metamath Proof Explorer


Theorem rr-phpd

Description: Equivalent of php without negation. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypotheses rr-phpd.1 φAω
rr-phpd.2 φBA
rr-phpd.3 φAB
Assertion rr-phpd φA=B

Proof

Step Hyp Ref Expression
1 rr-phpd.1 φAω
2 rr-phpd.2 φBA
3 rr-phpd.3 φAB
4 2 adantr φ¬A=BBA
5 simpr φ¬A=B¬A=B
6 5 neqcomd φ¬A=B¬B=A
7 dfpss2 BABA¬B=A
8 4 6 7 sylanbrc φ¬A=BBA
9 php AωBA¬AB
10 1 8 9 syl2an2r φ¬A=B¬AB
11 10 ex φ¬A=B¬AB
12 3 11 mt4d φA=B