Metamath Proof Explorer


Theorem rrhval

Description: Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017)

Ref Expression
Hypotheses rrhval.1 J = topGen ran .
rrhval.2 K = TopOpen R
Assertion rrhval R V ℝHom R = J CnExt K ℚHom R

Proof

Step Hyp Ref Expression
1 rrhval.1 J = topGen ran .
2 rrhval.2 K = TopOpen R
3 elex R V R V
4 1 eqcomi topGen ran . = J
5 4 a1i r = R topGen ran . = J
6 fveq2 r = R TopOpen r = TopOpen R
7 6 2 eqtr4di r = R TopOpen r = K
8 5 7 oveq12d r = R topGen ran . CnExt TopOpen r = J CnExt K
9 fveq2 r = R ℚHom r = ℚHom R
10 8 9 fveq12d r = R topGen ran . CnExt TopOpen r ℚHom r = J CnExt K ℚHom R
11 df-rrh ℝHom = r V topGen ran . CnExt TopOpen r ℚHom r
12 fvex J CnExt K ℚHom R V
13 10 11 12 fvmpt R V ℝHom R = J CnExt K ℚHom R
14 3 13 syl R V ℝHom R = J CnExt K ℚHom R