Metamath Proof Explorer


Theorem rrhval

Description: Value of the canonical homormorphism from the real numbers to a complete space. (Contributed by Thierry Arnoux, 2-Nov-2017)

Ref Expression
Hypotheses rrhval.1 J=topGenran.
rrhval.2 K=TopOpenR
Assertion rrhval RVℝHomR=JCnExtKℚHomR

Proof

Step Hyp Ref Expression
1 rrhval.1 J=topGenran.
2 rrhval.2 K=TopOpenR
3 elex RVRV
4 1 eqcomi topGenran.=J
5 4 a1i r=RtopGenran.=J
6 fveq2 r=RTopOpenr=TopOpenR
7 6 2 eqtr4di r=RTopOpenr=K
8 5 7 oveq12d r=RtopGenran.CnExtTopOpenr=JCnExtK
9 fveq2 r=RℚHomr=ℚHomR
10 8 9 fveq12d r=RtopGenran.CnExtTopOpenrℚHomr=JCnExtKℚHomR
11 df-rrh ℝHom=rVtopGenran.CnExtTopOpenrℚHomr
12 fvex JCnExtKℚHomRV
13 10 11 12 fvmpt RVℝHomR=JCnExtKℚHomR
14 3 13 syl RVℝHomR=JCnExtKℚHomR