Metamath Proof Explorer


Theorem rrxbase

Description: The base of the generalized real Euclidean space is the set of functions with finite support. (Contributed by Thierry Arnoux, 16-Jun-2019) (Proof shortened by AV, 22-Jul-2019)

Ref Expression
Hypotheses rrxval.r H=msup
rrxbase.b B=BaseH
Assertion rrxbase IVB=fI|finSupp0f

Proof

Step Hyp Ref Expression
1 rrxval.r H=msup
2 rrxbase.b B=BaseH
3 1 rrxval IVH=toCPreHilfldfreeLModI
4 3 fveq2d IVBaseH=BasetoCPreHilfldfreeLModI
5 eqid toCPreHilfldfreeLModI=toCPreHilfldfreeLModI
6 eqid BasefldfreeLModI=BasefldfreeLModI
7 5 6 tcphbas BasefldfreeLModI=BasetoCPreHilfldfreeLModI
8 4 7 eqtr4di IVBaseH=BasefldfreeLModI
9 2 a1i IVB=BaseH
10 refld fldField
11 eqid fldfreeLModI=fldfreeLModI
12 rebase =Basefld
13 re0g 0=0fld
14 eqid fI|finSupp0f=fI|finSupp0f
15 11 12 13 14 frlmbas fldFieldIVfI|finSupp0f=BasefldfreeLModI
16 10 15 mpan IVfI|finSupp0f=BasefldfreeLModI
17 8 9 16 3eqtr4d IVB=fI|finSupp0f