Metamath Proof Explorer


Theorem rrxdsfival

Description: The value of the Euclidean distance function in a generalized real Euclidean space of finite dimension. (Contributed by AV, 15-Jan-2023)

Ref Expression
Hypotheses rrxdsfival.1 X = I
rrxdsfival.d D = dist I
Assertion rrxdsfival I Fin F X G X F D G = k I F k G k 2

Proof

Step Hyp Ref Expression
1 rrxdsfival.1 X = I
2 rrxdsfival.d D = dist I
3 eqid I = I
4 3 1 rrxdsfi I Fin dist I = x X , y X k I x k y k 2
5 2 4 syl5eq I Fin D = x X , y X k I x k y k 2
6 5 oveqd I Fin F D G = F x X , y X k I x k y k 2 G
7 6 3ad2ant1 I Fin F X G X F D G = F x X , y X k I x k y k 2 G
8 eqidd I Fin F X G X x X , y X k I x k y k 2 = x X , y X k I x k y k 2
9 fveq1 x = F x k = F k
10 fveq1 y = G y k = G k
11 9 10 oveqan12d x = F y = G x k y k = F k G k
12 11 oveq1d x = F y = G x k y k 2 = F k G k 2
13 12 sumeq2sdv x = F y = G k I x k y k 2 = k I F k G k 2
14 13 fveq2d x = F y = G k I x k y k 2 = k I F k G k 2
15 14 adantl I Fin F X G X x = F y = G k I x k y k 2 = k I F k G k 2
16 simp2 I Fin F X G X F X
17 simp3 I Fin F X G X G X
18 fvexd I Fin F X G X k I F k G k 2 V
19 8 15 16 17 18 ovmpod I Fin F X G X F x X , y X k I x k y k 2 G = k I F k G k 2
20 7 19 eqtrd I Fin F X G X F D G = k I F k G k 2