Metamath Proof Explorer


Theorem rspectps

Description: The spectrum of a ring R is a topological space. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypothesis rspectps.1 S = Spec R
Assertion rspectps R CRing S TopSp

Proof

Step Hyp Ref Expression
1 rspectps.1 S = Spec R
2 eqid TopOpen S = TopOpen S
3 eqid PrmIdeal R = PrmIdeal R
4 1 2 3 zartopon R CRing TopOpen S TopOn PrmIdeal R
5 crngring R CRing R Ring
6 1 rspecbas R Ring PrmIdeal R = Base S
7 6 fveq2d R Ring TopOn PrmIdeal R = TopOn Base S
8 5 7 syl R CRing TopOn PrmIdeal R = TopOn Base S
9 4 8 eleqtrd R CRing TopOpen S TopOn Base S
10 eqid Base S = Base S
11 10 2 istps S TopSp TopOpen S TopOn Base S
12 9 11 sylibr R CRing S TopSp