| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspectps.1 |
|- S = ( Spec ` R ) |
| 2 |
|
eqid |
|- ( TopOpen ` S ) = ( TopOpen ` S ) |
| 3 |
|
eqid |
|- ( PrmIdeal ` R ) = ( PrmIdeal ` R ) |
| 4 |
1 2 3
|
zartopon |
|- ( R e. CRing -> ( TopOpen ` S ) e. ( TopOn ` ( PrmIdeal ` R ) ) ) |
| 5 |
|
crngring |
|- ( R e. CRing -> R e. Ring ) |
| 6 |
1
|
rspecbas |
|- ( R e. Ring -> ( PrmIdeal ` R ) = ( Base ` S ) ) |
| 7 |
6
|
fveq2d |
|- ( R e. Ring -> ( TopOn ` ( PrmIdeal ` R ) ) = ( TopOn ` ( Base ` S ) ) ) |
| 8 |
5 7
|
syl |
|- ( R e. CRing -> ( TopOn ` ( PrmIdeal ` R ) ) = ( TopOn ` ( Base ` S ) ) ) |
| 9 |
4 8
|
eleqtrd |
|- ( R e. CRing -> ( TopOpen ` S ) e. ( TopOn ` ( Base ` S ) ) ) |
| 10 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 11 |
10 2
|
istps |
|- ( S e. TopSp <-> ( TopOpen ` S ) e. ( TopOn ` ( Base ` S ) ) ) |
| 12 |
9 11
|
sylibr |
|- ( R e. CRing -> S e. TopSp ) |