| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rspectps.1 |  |-  S = ( Spec ` R ) | 
						
							| 2 |  | eqid |  |-  ( TopOpen ` S ) = ( TopOpen ` S ) | 
						
							| 3 |  | eqid |  |-  ( PrmIdeal ` R ) = ( PrmIdeal ` R ) | 
						
							| 4 | 1 2 3 | zartopon |  |-  ( R e. CRing -> ( TopOpen ` S ) e. ( TopOn ` ( PrmIdeal ` R ) ) ) | 
						
							| 5 |  | crngring |  |-  ( R e. CRing -> R e. Ring ) | 
						
							| 6 | 1 | rspecbas |  |-  ( R e. Ring -> ( PrmIdeal ` R ) = ( Base ` S ) ) | 
						
							| 7 | 6 | fveq2d |  |-  ( R e. Ring -> ( TopOn ` ( PrmIdeal ` R ) ) = ( TopOn ` ( Base ` S ) ) ) | 
						
							| 8 | 5 7 | syl |  |-  ( R e. CRing -> ( TopOn ` ( PrmIdeal ` R ) ) = ( TopOn ` ( Base ` S ) ) ) | 
						
							| 9 | 4 8 | eleqtrd |  |-  ( R e. CRing -> ( TopOpen ` S ) e. ( TopOn ` ( Base ` S ) ) ) | 
						
							| 10 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 11 | 10 2 | istps |  |-  ( S e. TopSp <-> ( TopOpen ` S ) e. ( TopOn ` ( Base ` S ) ) ) | 
						
							| 12 | 9 11 | sylibr |  |-  ( R e. CRing -> S e. TopSp ) |