| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rspectps.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
| 2 |
|
eqid |
⊢ ( TopOpen ‘ 𝑆 ) = ( TopOpen ‘ 𝑆 ) |
| 3 |
|
eqid |
⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) |
| 4 |
1 2 3
|
zartopon |
⊢ ( 𝑅 ∈ CRing → ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ) |
| 5 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 6 |
1
|
rspecbas |
⊢ ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
| 7 |
6
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) = ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
| 8 |
5 7
|
syl |
⊢ ( 𝑅 ∈ CRing → ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) = ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
| 9 |
4 8
|
eleqtrd |
⊢ ( 𝑅 ∈ CRing → ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 11 |
10 2
|
istps |
⊢ ( 𝑆 ∈ TopSp ↔ ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
| 12 |
9 11
|
sylibr |
⊢ ( 𝑅 ∈ CRing → 𝑆 ∈ TopSp ) |