Metamath Proof Explorer


Theorem rspectps

Description: The spectrum of a ring R is a topological space. (Contributed by Thierry Arnoux, 16-Jun-2024)

Ref Expression
Hypothesis rspectps.1 𝑆 = ( Spec ‘ 𝑅 )
Assertion rspectps ( 𝑅 ∈ CRing → 𝑆 ∈ TopSp )

Proof

Step Hyp Ref Expression
1 rspectps.1 𝑆 = ( Spec ‘ 𝑅 )
2 eqid ( TopOpen ‘ 𝑆 ) = ( TopOpen ‘ 𝑆 )
3 eqid ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 )
4 1 2 3 zartopon ( 𝑅 ∈ CRing → ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) )
5 crngring ( 𝑅 ∈ CRing → 𝑅 ∈ Ring )
6 1 rspecbas ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) = ( Base ‘ 𝑆 ) )
7 6 fveq2d ( 𝑅 ∈ Ring → ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) = ( TopOn ‘ ( Base ‘ 𝑆 ) ) )
8 5 7 syl ( 𝑅 ∈ CRing → ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) = ( TopOn ‘ ( Base ‘ 𝑆 ) ) )
9 4 8 eleqtrd ( 𝑅 ∈ CRing → ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) )
10 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
11 10 2 istps ( 𝑆 ∈ TopSp ↔ ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) )
12 9 11 sylibr ( 𝑅 ∈ CRing → 𝑆 ∈ TopSp )