Step |
Hyp |
Ref |
Expression |
1 |
|
rspectps.1 |
⊢ 𝑆 = ( Spec ‘ 𝑅 ) |
2 |
|
eqid |
⊢ ( TopOpen ‘ 𝑆 ) = ( TopOpen ‘ 𝑆 ) |
3 |
|
eqid |
⊢ ( PrmIdeal ‘ 𝑅 ) = ( PrmIdeal ‘ 𝑅 ) |
4 |
1 2 3
|
zartopon |
⊢ ( 𝑅 ∈ CRing → ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) ) |
5 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
6 |
1
|
rspecbas |
⊢ ( 𝑅 ∈ Ring → ( PrmIdeal ‘ 𝑅 ) = ( Base ‘ 𝑆 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝑅 ∈ Ring → ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) = ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
8 |
5 7
|
syl |
⊢ ( 𝑅 ∈ CRing → ( TopOn ‘ ( PrmIdeal ‘ 𝑅 ) ) = ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
9 |
4 8
|
eleqtrd |
⊢ ( 𝑅 ∈ CRing → ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
10 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
11 |
10 2
|
istps |
⊢ ( 𝑆 ∈ TopSp ↔ ( TopOpen ‘ 𝑆 ) ∈ ( TopOn ‘ ( Base ‘ 𝑆 ) ) ) |
12 |
9 11
|
sylibr |
⊢ ( 𝑅 ∈ CRing → 𝑆 ∈ TopSp ) |