Metamath Proof Explorer


Theorem rhmpreimacnlem

Description: Lemma for rhmpreimacn . (Contributed by Thierry Arnoux, 7-Jul-2024)

Ref Expression
Hypotheses rhmpreimacn.t 𝑇 = ( Spec ‘ 𝑅 )
rhmpreimacn.u 𝑈 = ( Spec ‘ 𝑆 )
rhmpreimacn.a 𝐴 = ( PrmIdeal ‘ 𝑅 )
rhmpreimacn.b 𝐵 = ( PrmIdeal ‘ 𝑆 )
rhmpreimacn.j 𝐽 = ( TopOpen ‘ 𝑇 )
rhmpreimacn.k 𝐾 = ( TopOpen ‘ 𝑈 )
rhmpreimacn.g 𝐺 = ( 𝑖𝐵 ↦ ( 𝐹𝑖 ) )
rhmpreimacn.r ( 𝜑𝑅 ∈ CRing )
rhmpreimacn.s ( 𝜑𝑆 ∈ CRing )
rhmpreimacn.f ( 𝜑𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )
rhmpreimacn.1 ( 𝜑 → ran 𝐹 = ( Base ‘ 𝑆 ) )
rhmpreimacnlem.1 ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
rhmpreimacnlem.v 𝑉 = ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘𝐴𝑗𝑘 } )
rhmpreimacnlem.w 𝑊 = ( 𝑗 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘𝐵𝑗𝑘 } )
Assertion rhmpreimacnlem ( 𝜑 → ( 𝑊 ‘ ( 𝐹𝐼 ) ) = ( 𝐺 “ ( 𝑉𝐼 ) ) )

Proof

Step Hyp Ref Expression
1 rhmpreimacn.t 𝑇 = ( Spec ‘ 𝑅 )
2 rhmpreimacn.u 𝑈 = ( Spec ‘ 𝑆 )
3 rhmpreimacn.a 𝐴 = ( PrmIdeal ‘ 𝑅 )
4 rhmpreimacn.b 𝐵 = ( PrmIdeal ‘ 𝑆 )
5 rhmpreimacn.j 𝐽 = ( TopOpen ‘ 𝑇 )
6 rhmpreimacn.k 𝐾 = ( TopOpen ‘ 𝑈 )
7 rhmpreimacn.g 𝐺 = ( 𝑖𝐵 ↦ ( 𝐹𝑖 ) )
8 rhmpreimacn.r ( 𝜑𝑅 ∈ CRing )
9 rhmpreimacn.s ( 𝜑𝑆 ∈ CRing )
10 rhmpreimacn.f ( 𝜑𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )
11 rhmpreimacn.1 ( 𝜑 → ran 𝐹 = ( Base ‘ 𝑆 ) )
12 rhmpreimacnlem.1 ( 𝜑𝐼 ∈ ( LIdeal ‘ 𝑅 ) )
13 rhmpreimacnlem.v 𝑉 = ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘𝐴𝑗𝑘 } )
14 rhmpreimacnlem.w 𝑊 = ( 𝑗 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘𝐵𝑗𝑘 } )
15 imaeq2 ( 𝑖 = 𝑔 → ( 𝐹𝑖 ) = ( 𝐹𝑔 ) )
16 simpr ( ( 𝜑𝑔𝐵 ) → 𝑔𝐵 )
17 10 elexd ( 𝜑𝐹 ∈ V )
18 cnvexg ( 𝐹 ∈ V → 𝐹 ∈ V )
19 imaexg ( 𝐹 ∈ V → ( 𝐹𝑔 ) ∈ V )
20 17 18 19 3syl ( 𝜑 → ( 𝐹𝑔 ) ∈ V )
21 20 adantr ( ( 𝜑𝑔𝐵 ) → ( 𝐹𝑔 ) ∈ V )
22 7 15 16 21 fvmptd3 ( ( 𝜑𝑔𝐵 ) → ( 𝐺𝑔 ) = ( 𝐹𝑔 ) )
23 22 eleq1d ( ( 𝜑𝑔𝐵 ) → ( ( 𝐺𝑔 ) ∈ ( 𝑉𝐼 ) ↔ ( 𝐹𝑔 ) ∈ ( 𝑉𝐼 ) ) )
24 23 pm5.32da ( 𝜑 → ( ( 𝑔𝐵 ∧ ( 𝐺𝑔 ) ∈ ( 𝑉𝐼 ) ) ↔ ( 𝑔𝐵 ∧ ( 𝐹𝑔 ) ∈ ( 𝑉𝐼 ) ) ) )
25 9 adantr ( ( 𝜑𝑖𝐵 ) → 𝑆 ∈ CRing )
26 10 adantr ( ( 𝜑𝑖𝐵 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )
27 simpr ( ( 𝜑𝑖𝐵 ) → 𝑖𝐵 )
28 27 4 eleqtrdi ( ( 𝜑𝑖𝐵 ) → 𝑖 ∈ ( PrmIdeal ‘ 𝑆 ) )
29 3 rhmpreimaprmidl ( ( ( 𝑆 ∈ CRing ∧ 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑆 ) ) → ( 𝐹𝑖 ) ∈ 𝐴 )
30 25 26 28 29 syl21anc ( ( 𝜑𝑖𝐵 ) → ( 𝐹𝑖 ) ∈ 𝐴 )
31 30 7 fmptd ( 𝜑𝐺 : 𝐵𝐴 )
32 31 ffnd ( 𝜑𝐺 Fn 𝐵 )
33 elpreima ( 𝐺 Fn 𝐵 → ( 𝑔 ∈ ( 𝐺 “ ( 𝑉𝐼 ) ) ↔ ( 𝑔𝐵 ∧ ( 𝐺𝑔 ) ∈ ( 𝑉𝐼 ) ) ) )
34 32 33 syl ( 𝜑 → ( 𝑔 ∈ ( 𝐺 “ ( 𝑉𝐼 ) ) ↔ ( 𝑔𝐵 ∧ ( 𝐺𝑔 ) ∈ ( 𝑉𝐼 ) ) ) )
35 sseq1 ( 𝑗 = ( 𝐹𝐼 ) → ( 𝑗𝑘 ↔ ( 𝐹𝐼 ) ⊆ 𝑘 ) )
36 35 rabbidv ( 𝑗 = ( 𝐹𝐼 ) → { 𝑘𝐵𝑗𝑘 } = { 𝑘𝐵 ∣ ( 𝐹𝐼 ) ⊆ 𝑘 } )
37 eqid ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 )
38 eqid ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 )
39 eqid ( LIdeal ‘ 𝑆 ) = ( LIdeal ‘ 𝑆 )
40 37 38 39 rhmimaidl ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ran 𝐹 = ( Base ‘ 𝑆 ) ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝐹𝐼 ) ∈ ( LIdeal ‘ 𝑆 ) )
41 10 11 12 40 syl3anc ( 𝜑 → ( 𝐹𝐼 ) ∈ ( LIdeal ‘ 𝑆 ) )
42 4 fvexi 𝐵 ∈ V
43 42 rabex { 𝑘𝐵 ∣ ( 𝐹𝐼 ) ⊆ 𝑘 } ∈ V
44 43 a1i ( 𝜑 → { 𝑘𝐵 ∣ ( 𝐹𝐼 ) ⊆ 𝑘 } ∈ V )
45 14 36 41 44 fvmptd3 ( 𝜑 → ( 𝑊 ‘ ( 𝐹𝐼 ) ) = { 𝑘𝐵 ∣ ( 𝐹𝐼 ) ⊆ 𝑘 } )
46 45 eleq2d ( 𝜑 → ( 𝑔 ∈ ( 𝑊 ‘ ( 𝐹𝐼 ) ) ↔ 𝑔 ∈ { 𝑘𝐵 ∣ ( 𝐹𝐼 ) ⊆ 𝑘 } ) )
47 sseq2 ( 𝑘 = 𝑔 → ( ( 𝐹𝐼 ) ⊆ 𝑘 ↔ ( 𝐹𝐼 ) ⊆ 𝑔 ) )
48 47 elrab ( 𝑔 ∈ { 𝑘𝐵 ∣ ( 𝐹𝐼 ) ⊆ 𝑘 } ↔ ( 𝑔𝐵 ∧ ( 𝐹𝐼 ) ⊆ 𝑔 ) )
49 46 48 bitrdi ( 𝜑 → ( 𝑔 ∈ ( 𝑊 ‘ ( 𝐹𝐼 ) ) ↔ ( 𝑔𝐵 ∧ ( 𝐹𝐼 ) ⊆ 𝑔 ) ) )
50 eqid ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 )
51 50 37 rhmf ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) )
52 10 51 syl ( 𝜑𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) )
53 52 ffund ( 𝜑 → Fun 𝐹 )
54 50 38 lidlss ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) )
55 12 54 syl ( 𝜑𝐼 ⊆ ( Base ‘ 𝑅 ) )
56 52 fdmd ( 𝜑 → dom 𝐹 = ( Base ‘ 𝑅 ) )
57 55 56 sseqtrrd ( 𝜑𝐼 ⊆ dom 𝐹 )
58 funimass3 ( ( Fun 𝐹𝐼 ⊆ dom 𝐹 ) → ( ( 𝐹𝐼 ) ⊆ 𝑔𝐼 ⊆ ( 𝐹𝑔 ) ) )
59 53 57 58 syl2anc ( 𝜑 → ( ( 𝐹𝐼 ) ⊆ 𝑔𝐼 ⊆ ( 𝐹𝑔 ) ) )
60 59 anbi2d ( 𝜑 → ( ( 𝑔𝐵 ∧ ( 𝐹𝐼 ) ⊆ 𝑔 ) ↔ ( 𝑔𝐵𝐼 ⊆ ( 𝐹𝑔 ) ) ) )
61 9 adantr ( ( 𝜑𝑔𝐵 ) → 𝑆 ∈ CRing )
62 10 adantr ( ( 𝜑𝑔𝐵 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) )
63 16 4 eleqtrdi ( ( 𝜑𝑔𝐵 ) → 𝑔 ∈ ( PrmIdeal ‘ 𝑆 ) )
64 3 rhmpreimaprmidl ( ( ( 𝑆 ∈ CRing ∧ 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) ∧ 𝑔 ∈ ( PrmIdeal ‘ 𝑆 ) ) → ( 𝐹𝑔 ) ∈ 𝐴 )
65 61 62 63 64 syl21anc ( ( 𝜑𝑔𝐵 ) → ( 𝐹𝑔 ) ∈ 𝐴 )
66 65 biantrurd ( ( 𝜑𝑔𝐵 ) → ( 𝐼 ⊆ ( 𝐹𝑔 ) ↔ ( ( 𝐹𝑔 ) ∈ 𝐴𝐼 ⊆ ( 𝐹𝑔 ) ) ) )
67 66 pm5.32da ( 𝜑 → ( ( 𝑔𝐵𝐼 ⊆ ( 𝐹𝑔 ) ) ↔ ( 𝑔𝐵 ∧ ( ( 𝐹𝑔 ) ∈ 𝐴𝐼 ⊆ ( 𝐹𝑔 ) ) ) ) )
68 49 60 67 3bitrd ( 𝜑 → ( 𝑔 ∈ ( 𝑊 ‘ ( 𝐹𝐼 ) ) ↔ ( 𝑔𝐵 ∧ ( ( 𝐹𝑔 ) ∈ 𝐴𝐼 ⊆ ( 𝐹𝑔 ) ) ) ) )
69 sseq2 ( 𝑘 = ( 𝐹𝑔 ) → ( 𝐼𝑘𝐼 ⊆ ( 𝐹𝑔 ) ) )
70 69 elrab ( ( 𝐹𝑔 ) ∈ { 𝑘𝐴𝐼𝑘 } ↔ ( ( 𝐹𝑔 ) ∈ 𝐴𝐼 ⊆ ( 𝐹𝑔 ) ) )
71 70 anbi2i ( ( 𝑔𝐵 ∧ ( 𝐹𝑔 ) ∈ { 𝑘𝐴𝐼𝑘 } ) ↔ ( 𝑔𝐵 ∧ ( ( 𝐹𝑔 ) ∈ 𝐴𝐼 ⊆ ( 𝐹𝑔 ) ) ) )
72 68 71 bitr4di ( 𝜑 → ( 𝑔 ∈ ( 𝑊 ‘ ( 𝐹𝐼 ) ) ↔ ( 𝑔𝐵 ∧ ( 𝐹𝑔 ) ∈ { 𝑘𝐴𝐼𝑘 } ) ) )
73 sseq1 ( 𝑗 = 𝐼 → ( 𝑗𝑘𝐼𝑘 ) )
74 73 rabbidv ( 𝑗 = 𝐼 → { 𝑘𝐴𝑗𝑘 } = { 𝑘𝐴𝐼𝑘 } )
75 3 fvexi 𝐴 ∈ V
76 75 rabex { 𝑘𝐴𝐼𝑘 } ∈ V
77 76 a1i ( 𝜑 → { 𝑘𝐴𝐼𝑘 } ∈ V )
78 13 74 12 77 fvmptd3 ( 𝜑 → ( 𝑉𝐼 ) = { 𝑘𝐴𝐼𝑘 } )
79 78 eleq2d ( 𝜑 → ( ( 𝐹𝑔 ) ∈ ( 𝑉𝐼 ) ↔ ( 𝐹𝑔 ) ∈ { 𝑘𝐴𝐼𝑘 } ) )
80 79 anbi2d ( 𝜑 → ( ( 𝑔𝐵 ∧ ( 𝐹𝑔 ) ∈ ( 𝑉𝐼 ) ) ↔ ( 𝑔𝐵 ∧ ( 𝐹𝑔 ) ∈ { 𝑘𝐴𝐼𝑘 } ) ) )
81 72 80 bitr4d ( 𝜑 → ( 𝑔 ∈ ( 𝑊 ‘ ( 𝐹𝐼 ) ) ↔ ( 𝑔𝐵 ∧ ( 𝐹𝑔 ) ∈ ( 𝑉𝐼 ) ) ) )
82 24 34 81 3bitr4rd ( 𝜑 → ( 𝑔 ∈ ( 𝑊 ‘ ( 𝐹𝐼 ) ) ↔ 𝑔 ∈ ( 𝐺 “ ( 𝑉𝐼 ) ) ) )
83 82 eqrdv ( 𝜑 → ( 𝑊 ‘ ( 𝐹𝐼 ) ) = ( 𝐺 “ ( 𝑉𝐼 ) ) )