| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmpreimacn.t | ⊢ 𝑇  =  ( Spec ‘ 𝑅 ) | 
						
							| 2 |  | rhmpreimacn.u | ⊢ 𝑈  =  ( Spec ‘ 𝑆 ) | 
						
							| 3 |  | rhmpreimacn.a | ⊢ 𝐴  =  ( PrmIdeal ‘ 𝑅 ) | 
						
							| 4 |  | rhmpreimacn.b | ⊢ 𝐵  =  ( PrmIdeal ‘ 𝑆 ) | 
						
							| 5 |  | rhmpreimacn.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑇 ) | 
						
							| 6 |  | rhmpreimacn.k | ⊢ 𝐾  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 7 |  | rhmpreimacn.g | ⊢ 𝐺  =  ( 𝑖  ∈  𝐵  ↦  ( ◡ 𝐹  “  𝑖 ) ) | 
						
							| 8 |  | rhmpreimacn.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 9 |  | rhmpreimacn.s | ⊢ ( 𝜑  →  𝑆  ∈  CRing ) | 
						
							| 10 |  | rhmpreimacn.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 11 |  | rhmpreimacn.1 | ⊢ ( 𝜑  →  ran  𝐹  =  ( Base ‘ 𝑆 ) ) | 
						
							| 12 |  | rhmpreimacnlem.1 | ⊢ ( 𝜑  →  𝐼  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 13 |  | rhmpreimacnlem.v | ⊢ 𝑉  =  ( 𝑗  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑗  ⊆  𝑘 } ) | 
						
							| 14 |  | rhmpreimacnlem.w | ⊢ 𝑊  =  ( 𝑗  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑗  ⊆  𝑘 } ) | 
						
							| 15 |  | imaeq2 | ⊢ ( 𝑖  =  𝑔  →  ( ◡ 𝐹  “  𝑖 )  =  ( ◡ 𝐹  “  𝑔 ) ) | 
						
							| 16 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝑔  ∈  𝐵 ) | 
						
							| 17 | 10 | elexd | ⊢ ( 𝜑  →  𝐹  ∈  V ) | 
						
							| 18 |  | cnvexg | ⊢ ( 𝐹  ∈  V  →  ◡ 𝐹  ∈  V ) | 
						
							| 19 |  | imaexg | ⊢ ( ◡ 𝐹  ∈  V  →  ( ◡ 𝐹  “  𝑔 )  ∈  V ) | 
						
							| 20 | 17 18 19 | 3syl | ⊢ ( 𝜑  →  ( ◡ 𝐹  “  𝑔 )  ∈  V ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ( ◡ 𝐹  “  𝑔 )  ∈  V ) | 
						
							| 22 | 7 15 16 21 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ( 𝐺 ‘ 𝑔 )  =  ( ◡ 𝐹  “  𝑔 ) ) | 
						
							| 23 | 22 | eleq1d | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ( ( 𝐺 ‘ 𝑔 )  ∈  ( 𝑉 ‘ 𝐼 )  ↔  ( ◡ 𝐹  “  𝑔 )  ∈  ( 𝑉 ‘ 𝐼 ) ) ) | 
						
							| 24 | 23 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑔 )  ∈  ( 𝑉 ‘ 𝐼 ) )  ↔  ( 𝑔  ∈  𝐵  ∧  ( ◡ 𝐹  “  𝑔 )  ∈  ( 𝑉 ‘ 𝐼 ) ) ) ) | 
						
							| 25 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐵 )  →  𝑆  ∈  CRing ) | 
						
							| 26 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐵 )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 27 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐵 )  →  𝑖  ∈  𝐵 ) | 
						
							| 28 | 27 4 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐵 )  →  𝑖  ∈  ( PrmIdeal ‘ 𝑆 ) ) | 
						
							| 29 | 3 | rhmpreimaprmidl | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝑖  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  ( ◡ 𝐹  “  𝑖 )  ∈  𝐴 ) | 
						
							| 30 | 25 26 28 29 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐵 )  →  ( ◡ 𝐹  “  𝑖 )  ∈  𝐴 ) | 
						
							| 31 | 30 7 | fmptd | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 32 | 31 | ffnd | ⊢ ( 𝜑  →  𝐺  Fn  𝐵 ) | 
						
							| 33 |  | elpreima | ⊢ ( 𝐺  Fn  𝐵  →  ( 𝑔  ∈  ( ◡ 𝐺  “  ( 𝑉 ‘ 𝐼 ) )  ↔  ( 𝑔  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑔 )  ∈  ( 𝑉 ‘ 𝐼 ) ) ) ) | 
						
							| 34 | 32 33 | syl | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( ◡ 𝐺  “  ( 𝑉 ‘ 𝐼 ) )  ↔  ( 𝑔  ∈  𝐵  ∧  ( 𝐺 ‘ 𝑔 )  ∈  ( 𝑉 ‘ 𝐼 ) ) ) ) | 
						
							| 35 |  | sseq1 | ⊢ ( 𝑗  =  ( 𝐹  “  𝐼 )  →  ( 𝑗  ⊆  𝑘  ↔  ( 𝐹  “  𝐼 )  ⊆  𝑘 ) ) | 
						
							| 36 | 35 | rabbidv | ⊢ ( 𝑗  =  ( 𝐹  “  𝐼 )  →  { 𝑘  ∈  𝐵  ∣  𝑗  ⊆  𝑘 }  =  { 𝑘  ∈  𝐵  ∣  ( 𝐹  “  𝐼 )  ⊆  𝑘 } ) | 
						
							| 37 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 38 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 39 |  | eqid | ⊢ ( LIdeal ‘ 𝑆 )  =  ( LIdeal ‘ 𝑆 ) | 
						
							| 40 | 37 38 39 | rhmimaidl | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  ran  𝐹  =  ( Base ‘ 𝑆 )  ∧  𝐼  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( 𝐹  “  𝐼 )  ∈  ( LIdeal ‘ 𝑆 ) ) | 
						
							| 41 | 10 11 12 40 | syl3anc | ⊢ ( 𝜑  →  ( 𝐹  “  𝐼 )  ∈  ( LIdeal ‘ 𝑆 ) ) | 
						
							| 42 | 4 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 43 | 42 | rabex | ⊢ { 𝑘  ∈  𝐵  ∣  ( 𝐹  “  𝐼 )  ⊆  𝑘 }  ∈  V | 
						
							| 44 | 43 | a1i | ⊢ ( 𝜑  →  { 𝑘  ∈  𝐵  ∣  ( 𝐹  “  𝐼 )  ⊆  𝑘 }  ∈  V ) | 
						
							| 45 | 14 36 41 44 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( 𝐹  “  𝐼 ) )  =  { 𝑘  ∈  𝐵  ∣  ( 𝐹  “  𝐼 )  ⊆  𝑘 } ) | 
						
							| 46 | 45 | eleq2d | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( 𝑊 ‘ ( 𝐹  “  𝐼 ) )  ↔  𝑔  ∈  { 𝑘  ∈  𝐵  ∣  ( 𝐹  “  𝐼 )  ⊆  𝑘 } ) ) | 
						
							| 47 |  | sseq2 | ⊢ ( 𝑘  =  𝑔  →  ( ( 𝐹  “  𝐼 )  ⊆  𝑘  ↔  ( 𝐹  “  𝐼 )  ⊆  𝑔 ) ) | 
						
							| 48 | 47 | elrab | ⊢ ( 𝑔  ∈  { 𝑘  ∈  𝐵  ∣  ( 𝐹  “  𝐼 )  ⊆  𝑘 }  ↔  ( 𝑔  ∈  𝐵  ∧  ( 𝐹  “  𝐼 )  ⊆  𝑔 ) ) | 
						
							| 49 | 46 48 | bitrdi | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( 𝑊 ‘ ( 𝐹  “  𝐼 ) )  ↔  ( 𝑔  ∈  𝐵  ∧  ( 𝐹  “  𝐼 )  ⊆  𝑔 ) ) ) | 
						
							| 50 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 51 | 50 37 | rhmf | ⊢ ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 52 | 10 51 | syl | ⊢ ( 𝜑  →  𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) | 
						
							| 53 | 52 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 54 | 50 38 | lidlss | ⊢ ( 𝐼  ∈  ( LIdeal ‘ 𝑅 )  →  𝐼  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 55 | 12 54 | syl | ⊢ ( 𝜑  →  𝐼  ⊆  ( Base ‘ 𝑅 ) ) | 
						
							| 56 | 52 | fdmd | ⊢ ( 𝜑  →  dom  𝐹  =  ( Base ‘ 𝑅 ) ) | 
						
							| 57 | 55 56 | sseqtrrd | ⊢ ( 𝜑  →  𝐼  ⊆  dom  𝐹 ) | 
						
							| 58 |  | funimass3 | ⊢ ( ( Fun  𝐹  ∧  𝐼  ⊆  dom  𝐹 )  →  ( ( 𝐹  “  𝐼 )  ⊆  𝑔  ↔  𝐼  ⊆  ( ◡ 𝐹  “  𝑔 ) ) ) | 
						
							| 59 | 53 57 58 | syl2anc | ⊢ ( 𝜑  →  ( ( 𝐹  “  𝐼 )  ⊆  𝑔  ↔  𝐼  ⊆  ( ◡ 𝐹  “  𝑔 ) ) ) | 
						
							| 60 | 59 | anbi2d | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐵  ∧  ( 𝐹  “  𝐼 )  ⊆  𝑔 )  ↔  ( 𝑔  ∈  𝐵  ∧  𝐼  ⊆  ( ◡ 𝐹  “  𝑔 ) ) ) ) | 
						
							| 61 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝑆  ∈  CRing ) | 
						
							| 62 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 63 | 16 4 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  𝑔  ∈  ( PrmIdeal ‘ 𝑆 ) ) | 
						
							| 64 | 3 | rhmpreimaprmidl | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝑔  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  ( ◡ 𝐹  “  𝑔 )  ∈  𝐴 ) | 
						
							| 65 | 61 62 63 64 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ( ◡ 𝐹  “  𝑔 )  ∈  𝐴 ) | 
						
							| 66 | 65 | biantrurd | ⊢ ( ( 𝜑  ∧  𝑔  ∈  𝐵 )  →  ( 𝐼  ⊆  ( ◡ 𝐹  “  𝑔 )  ↔  ( ( ◡ 𝐹  “  𝑔 )  ∈  𝐴  ∧  𝐼  ⊆  ( ◡ 𝐹  “  𝑔 ) ) ) ) | 
						
							| 67 | 66 | pm5.32da | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐵  ∧  𝐼  ⊆  ( ◡ 𝐹  “  𝑔 ) )  ↔  ( 𝑔  ∈  𝐵  ∧  ( ( ◡ 𝐹  “  𝑔 )  ∈  𝐴  ∧  𝐼  ⊆  ( ◡ 𝐹  “  𝑔 ) ) ) ) ) | 
						
							| 68 | 49 60 67 | 3bitrd | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( 𝑊 ‘ ( 𝐹  “  𝐼 ) )  ↔  ( 𝑔  ∈  𝐵  ∧  ( ( ◡ 𝐹  “  𝑔 )  ∈  𝐴  ∧  𝐼  ⊆  ( ◡ 𝐹  “  𝑔 ) ) ) ) ) | 
						
							| 69 |  | sseq2 | ⊢ ( 𝑘  =  ( ◡ 𝐹  “  𝑔 )  →  ( 𝐼  ⊆  𝑘  ↔  𝐼  ⊆  ( ◡ 𝐹  “  𝑔 ) ) ) | 
						
							| 70 | 69 | elrab | ⊢ ( ( ◡ 𝐹  “  𝑔 )  ∈  { 𝑘  ∈  𝐴  ∣  𝐼  ⊆  𝑘 }  ↔  ( ( ◡ 𝐹  “  𝑔 )  ∈  𝐴  ∧  𝐼  ⊆  ( ◡ 𝐹  “  𝑔 ) ) ) | 
						
							| 71 | 70 | anbi2i | ⊢ ( ( 𝑔  ∈  𝐵  ∧  ( ◡ 𝐹  “  𝑔 )  ∈  { 𝑘  ∈  𝐴  ∣  𝐼  ⊆  𝑘 } )  ↔  ( 𝑔  ∈  𝐵  ∧  ( ( ◡ 𝐹  “  𝑔 )  ∈  𝐴  ∧  𝐼  ⊆  ( ◡ 𝐹  “  𝑔 ) ) ) ) | 
						
							| 72 | 68 71 | bitr4di | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( 𝑊 ‘ ( 𝐹  “  𝐼 ) )  ↔  ( 𝑔  ∈  𝐵  ∧  ( ◡ 𝐹  “  𝑔 )  ∈  { 𝑘  ∈  𝐴  ∣  𝐼  ⊆  𝑘 } ) ) ) | 
						
							| 73 |  | sseq1 | ⊢ ( 𝑗  =  𝐼  →  ( 𝑗  ⊆  𝑘  ↔  𝐼  ⊆  𝑘 ) ) | 
						
							| 74 | 73 | rabbidv | ⊢ ( 𝑗  =  𝐼  →  { 𝑘  ∈  𝐴  ∣  𝑗  ⊆  𝑘 }  =  { 𝑘  ∈  𝐴  ∣  𝐼  ⊆  𝑘 } ) | 
						
							| 75 | 3 | fvexi | ⊢ 𝐴  ∈  V | 
						
							| 76 | 75 | rabex | ⊢ { 𝑘  ∈  𝐴  ∣  𝐼  ⊆  𝑘 }  ∈  V | 
						
							| 77 | 76 | a1i | ⊢ ( 𝜑  →  { 𝑘  ∈  𝐴  ∣  𝐼  ⊆  𝑘 }  ∈  V ) | 
						
							| 78 | 13 74 12 77 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝑉 ‘ 𝐼 )  =  { 𝑘  ∈  𝐴  ∣  𝐼  ⊆  𝑘 } ) | 
						
							| 79 | 78 | eleq2d | ⊢ ( 𝜑  →  ( ( ◡ 𝐹  “  𝑔 )  ∈  ( 𝑉 ‘ 𝐼 )  ↔  ( ◡ 𝐹  “  𝑔 )  ∈  { 𝑘  ∈  𝐴  ∣  𝐼  ⊆  𝑘 } ) ) | 
						
							| 80 | 79 | anbi2d | ⊢ ( 𝜑  →  ( ( 𝑔  ∈  𝐵  ∧  ( ◡ 𝐹  “  𝑔 )  ∈  ( 𝑉 ‘ 𝐼 ) )  ↔  ( 𝑔  ∈  𝐵  ∧  ( ◡ 𝐹  “  𝑔 )  ∈  { 𝑘  ∈  𝐴  ∣  𝐼  ⊆  𝑘 } ) ) ) | 
						
							| 81 | 72 80 | bitr4d | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( 𝑊 ‘ ( 𝐹  “  𝐼 ) )  ↔  ( 𝑔  ∈  𝐵  ∧  ( ◡ 𝐹  “  𝑔 )  ∈  ( 𝑉 ‘ 𝐼 ) ) ) ) | 
						
							| 82 | 24 34 81 | 3bitr4rd | ⊢ ( 𝜑  →  ( 𝑔  ∈  ( 𝑊 ‘ ( 𝐹  “  𝐼 ) )  ↔  𝑔  ∈  ( ◡ 𝐺  “  ( 𝑉 ‘ 𝐼 ) ) ) ) | 
						
							| 83 | 82 | eqrdv | ⊢ ( 𝜑  →  ( 𝑊 ‘ ( 𝐹  “  𝐼 ) )  =  ( ◡ 𝐺  “  ( 𝑉 ‘ 𝐼 ) ) ) |