Step |
Hyp |
Ref |
Expression |
1 |
|
rhmpreimacn.t |
⊢ 𝑇 = ( Spec ‘ 𝑅 ) |
2 |
|
rhmpreimacn.u |
⊢ 𝑈 = ( Spec ‘ 𝑆 ) |
3 |
|
rhmpreimacn.a |
⊢ 𝐴 = ( PrmIdeal ‘ 𝑅 ) |
4 |
|
rhmpreimacn.b |
⊢ 𝐵 = ( PrmIdeal ‘ 𝑆 ) |
5 |
|
rhmpreimacn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑇 ) |
6 |
|
rhmpreimacn.k |
⊢ 𝐾 = ( TopOpen ‘ 𝑈 ) |
7 |
|
rhmpreimacn.g |
⊢ 𝐺 = ( 𝑖 ∈ 𝐵 ↦ ( ◡ 𝐹 “ 𝑖 ) ) |
8 |
|
rhmpreimacn.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
9 |
|
rhmpreimacn.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
10 |
|
rhmpreimacn.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
11 |
|
rhmpreimacn.1 |
⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝑆 ) ) |
12 |
|
rhmpreimacnlem.1 |
⊢ ( 𝜑 → 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) |
13 |
|
rhmpreimacnlem.v |
⊢ 𝑉 = ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑗 ⊆ 𝑘 } ) |
14 |
|
rhmpreimacnlem.w |
⊢ 𝑊 = ( 𝑗 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑗 ⊆ 𝑘 } ) |
15 |
|
imaeq2 |
⊢ ( 𝑖 = 𝑔 → ( ◡ 𝐹 “ 𝑖 ) = ( ◡ 𝐹 “ 𝑔 ) ) |
16 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ 𝐵 ) |
17 |
10
|
elexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
18 |
|
cnvexg |
⊢ ( 𝐹 ∈ V → ◡ 𝐹 ∈ V ) |
19 |
|
imaexg |
⊢ ( ◡ 𝐹 ∈ V → ( ◡ 𝐹 “ 𝑔 ) ∈ V ) |
20 |
17 18 19
|
3syl |
⊢ ( 𝜑 → ( ◡ 𝐹 “ 𝑔 ) ∈ V ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( ◡ 𝐹 “ 𝑔 ) ∈ V ) |
22 |
7 15 16 21
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( 𝐺 ‘ 𝑔 ) = ( ◡ 𝐹 “ 𝑔 ) ) |
23 |
22
|
eleq1d |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( ( 𝐺 ‘ 𝑔 ) ∈ ( 𝑉 ‘ 𝐼 ) ↔ ( ◡ 𝐹 “ 𝑔 ) ∈ ( 𝑉 ‘ 𝐼 ) ) ) |
24 |
23
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑔 ) ∈ ( 𝑉 ‘ 𝐼 ) ) ↔ ( 𝑔 ∈ 𝐵 ∧ ( ◡ 𝐹 “ 𝑔 ) ∈ ( 𝑉 ‘ 𝐼 ) ) ) ) |
25 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ) → 𝑆 ∈ CRing ) |
26 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
27 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ) → 𝑖 ∈ 𝐵 ) |
28 |
27 4
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ) → 𝑖 ∈ ( PrmIdeal ‘ 𝑆 ) ) |
29 |
3
|
rhmpreimaprmidl |
⊢ ( ( ( 𝑆 ∈ CRing ∧ 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑆 ) ) → ( ◡ 𝐹 “ 𝑖 ) ∈ 𝐴 ) |
30 |
25 26 28 29
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ) → ( ◡ 𝐹 “ 𝑖 ) ∈ 𝐴 ) |
31 |
30 7
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
32 |
31
|
ffnd |
⊢ ( 𝜑 → 𝐺 Fn 𝐵 ) |
33 |
|
elpreima |
⊢ ( 𝐺 Fn 𝐵 → ( 𝑔 ∈ ( ◡ 𝐺 “ ( 𝑉 ‘ 𝐼 ) ) ↔ ( 𝑔 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑔 ) ∈ ( 𝑉 ‘ 𝐼 ) ) ) ) |
34 |
32 33
|
syl |
⊢ ( 𝜑 → ( 𝑔 ∈ ( ◡ 𝐺 “ ( 𝑉 ‘ 𝐼 ) ) ↔ ( 𝑔 ∈ 𝐵 ∧ ( 𝐺 ‘ 𝑔 ) ∈ ( 𝑉 ‘ 𝐼 ) ) ) ) |
35 |
|
sseq1 |
⊢ ( 𝑗 = ( 𝐹 “ 𝐼 ) → ( 𝑗 ⊆ 𝑘 ↔ ( 𝐹 “ 𝐼 ) ⊆ 𝑘 ) ) |
36 |
35
|
rabbidv |
⊢ ( 𝑗 = ( 𝐹 “ 𝐼 ) → { 𝑘 ∈ 𝐵 ∣ 𝑗 ⊆ 𝑘 } = { 𝑘 ∈ 𝐵 ∣ ( 𝐹 “ 𝐼 ) ⊆ 𝑘 } ) |
37 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
38 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
39 |
|
eqid |
⊢ ( LIdeal ‘ 𝑆 ) = ( LIdeal ‘ 𝑆 ) |
40 |
37 38 39
|
rhmimaidl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ran 𝐹 = ( Base ‘ 𝑆 ) ∧ 𝐼 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝐹 “ 𝐼 ) ∈ ( LIdeal ‘ 𝑆 ) ) |
41 |
10 11 12 40
|
syl3anc |
⊢ ( 𝜑 → ( 𝐹 “ 𝐼 ) ∈ ( LIdeal ‘ 𝑆 ) ) |
42 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
43 |
42
|
rabex |
⊢ { 𝑘 ∈ 𝐵 ∣ ( 𝐹 “ 𝐼 ) ⊆ 𝑘 } ∈ V |
44 |
43
|
a1i |
⊢ ( 𝜑 → { 𝑘 ∈ 𝐵 ∣ ( 𝐹 “ 𝐼 ) ⊆ 𝑘 } ∈ V ) |
45 |
14 36 41 44
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝑊 ‘ ( 𝐹 “ 𝐼 ) ) = { 𝑘 ∈ 𝐵 ∣ ( 𝐹 “ 𝐼 ) ⊆ 𝑘 } ) |
46 |
45
|
eleq2d |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑊 ‘ ( 𝐹 “ 𝐼 ) ) ↔ 𝑔 ∈ { 𝑘 ∈ 𝐵 ∣ ( 𝐹 “ 𝐼 ) ⊆ 𝑘 } ) ) |
47 |
|
sseq2 |
⊢ ( 𝑘 = 𝑔 → ( ( 𝐹 “ 𝐼 ) ⊆ 𝑘 ↔ ( 𝐹 “ 𝐼 ) ⊆ 𝑔 ) ) |
48 |
47
|
elrab |
⊢ ( 𝑔 ∈ { 𝑘 ∈ 𝐵 ∣ ( 𝐹 “ 𝐼 ) ⊆ 𝑘 } ↔ ( 𝑔 ∈ 𝐵 ∧ ( 𝐹 “ 𝐼 ) ⊆ 𝑔 ) ) |
49 |
46 48
|
bitrdi |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑊 ‘ ( 𝐹 “ 𝐼 ) ) ↔ ( 𝑔 ∈ 𝐵 ∧ ( 𝐹 “ 𝐼 ) ⊆ 𝑔 ) ) ) |
50 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
51 |
50 37
|
rhmf |
⊢ ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
52 |
10 51
|
syl |
⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑅 ) ⟶ ( Base ‘ 𝑆 ) ) |
53 |
52
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
54 |
50 38
|
lidlss |
⊢ ( 𝐼 ∈ ( LIdeal ‘ 𝑅 ) → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
55 |
12 54
|
syl |
⊢ ( 𝜑 → 𝐼 ⊆ ( Base ‘ 𝑅 ) ) |
56 |
52
|
fdmd |
⊢ ( 𝜑 → dom 𝐹 = ( Base ‘ 𝑅 ) ) |
57 |
55 56
|
sseqtrrd |
⊢ ( 𝜑 → 𝐼 ⊆ dom 𝐹 ) |
58 |
|
funimass3 |
⊢ ( ( Fun 𝐹 ∧ 𝐼 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝐼 ) ⊆ 𝑔 ↔ 𝐼 ⊆ ( ◡ 𝐹 “ 𝑔 ) ) ) |
59 |
53 57 58
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐹 “ 𝐼 ) ⊆ 𝑔 ↔ 𝐼 ⊆ ( ◡ 𝐹 “ 𝑔 ) ) ) |
60 |
59
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐵 ∧ ( 𝐹 “ 𝐼 ) ⊆ 𝑔 ) ↔ ( 𝑔 ∈ 𝐵 ∧ 𝐼 ⊆ ( ◡ 𝐹 “ 𝑔 ) ) ) ) |
61 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑆 ∈ CRing ) |
62 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
63 |
16 4
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → 𝑔 ∈ ( PrmIdeal ‘ 𝑆 ) ) |
64 |
3
|
rhmpreimaprmidl |
⊢ ( ( ( 𝑆 ∈ CRing ∧ 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) ∧ 𝑔 ∈ ( PrmIdeal ‘ 𝑆 ) ) → ( ◡ 𝐹 “ 𝑔 ) ∈ 𝐴 ) |
65 |
61 62 63 64
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( ◡ 𝐹 “ 𝑔 ) ∈ 𝐴 ) |
66 |
65
|
biantrurd |
⊢ ( ( 𝜑 ∧ 𝑔 ∈ 𝐵 ) → ( 𝐼 ⊆ ( ◡ 𝐹 “ 𝑔 ) ↔ ( ( ◡ 𝐹 “ 𝑔 ) ∈ 𝐴 ∧ 𝐼 ⊆ ( ◡ 𝐹 “ 𝑔 ) ) ) ) |
67 |
66
|
pm5.32da |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐵 ∧ 𝐼 ⊆ ( ◡ 𝐹 “ 𝑔 ) ) ↔ ( 𝑔 ∈ 𝐵 ∧ ( ( ◡ 𝐹 “ 𝑔 ) ∈ 𝐴 ∧ 𝐼 ⊆ ( ◡ 𝐹 “ 𝑔 ) ) ) ) ) |
68 |
49 60 67
|
3bitrd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑊 ‘ ( 𝐹 “ 𝐼 ) ) ↔ ( 𝑔 ∈ 𝐵 ∧ ( ( ◡ 𝐹 “ 𝑔 ) ∈ 𝐴 ∧ 𝐼 ⊆ ( ◡ 𝐹 “ 𝑔 ) ) ) ) ) |
69 |
|
sseq2 |
⊢ ( 𝑘 = ( ◡ 𝐹 “ 𝑔 ) → ( 𝐼 ⊆ 𝑘 ↔ 𝐼 ⊆ ( ◡ 𝐹 “ 𝑔 ) ) ) |
70 |
69
|
elrab |
⊢ ( ( ◡ 𝐹 “ 𝑔 ) ∈ { 𝑘 ∈ 𝐴 ∣ 𝐼 ⊆ 𝑘 } ↔ ( ( ◡ 𝐹 “ 𝑔 ) ∈ 𝐴 ∧ 𝐼 ⊆ ( ◡ 𝐹 “ 𝑔 ) ) ) |
71 |
70
|
anbi2i |
⊢ ( ( 𝑔 ∈ 𝐵 ∧ ( ◡ 𝐹 “ 𝑔 ) ∈ { 𝑘 ∈ 𝐴 ∣ 𝐼 ⊆ 𝑘 } ) ↔ ( 𝑔 ∈ 𝐵 ∧ ( ( ◡ 𝐹 “ 𝑔 ) ∈ 𝐴 ∧ 𝐼 ⊆ ( ◡ 𝐹 “ 𝑔 ) ) ) ) |
72 |
68 71
|
bitr4di |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑊 ‘ ( 𝐹 “ 𝐼 ) ) ↔ ( 𝑔 ∈ 𝐵 ∧ ( ◡ 𝐹 “ 𝑔 ) ∈ { 𝑘 ∈ 𝐴 ∣ 𝐼 ⊆ 𝑘 } ) ) ) |
73 |
|
sseq1 |
⊢ ( 𝑗 = 𝐼 → ( 𝑗 ⊆ 𝑘 ↔ 𝐼 ⊆ 𝑘 ) ) |
74 |
73
|
rabbidv |
⊢ ( 𝑗 = 𝐼 → { 𝑘 ∈ 𝐴 ∣ 𝑗 ⊆ 𝑘 } = { 𝑘 ∈ 𝐴 ∣ 𝐼 ⊆ 𝑘 } ) |
75 |
3
|
fvexi |
⊢ 𝐴 ∈ V |
76 |
75
|
rabex |
⊢ { 𝑘 ∈ 𝐴 ∣ 𝐼 ⊆ 𝑘 } ∈ V |
77 |
76
|
a1i |
⊢ ( 𝜑 → { 𝑘 ∈ 𝐴 ∣ 𝐼 ⊆ 𝑘 } ∈ V ) |
78 |
13 74 12 77
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝑉 ‘ 𝐼 ) = { 𝑘 ∈ 𝐴 ∣ 𝐼 ⊆ 𝑘 } ) |
79 |
78
|
eleq2d |
⊢ ( 𝜑 → ( ( ◡ 𝐹 “ 𝑔 ) ∈ ( 𝑉 ‘ 𝐼 ) ↔ ( ◡ 𝐹 “ 𝑔 ) ∈ { 𝑘 ∈ 𝐴 ∣ 𝐼 ⊆ 𝑘 } ) ) |
80 |
79
|
anbi2d |
⊢ ( 𝜑 → ( ( 𝑔 ∈ 𝐵 ∧ ( ◡ 𝐹 “ 𝑔 ) ∈ ( 𝑉 ‘ 𝐼 ) ) ↔ ( 𝑔 ∈ 𝐵 ∧ ( ◡ 𝐹 “ 𝑔 ) ∈ { 𝑘 ∈ 𝐴 ∣ 𝐼 ⊆ 𝑘 } ) ) ) |
81 |
72 80
|
bitr4d |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑊 ‘ ( 𝐹 “ 𝐼 ) ) ↔ ( 𝑔 ∈ 𝐵 ∧ ( ◡ 𝐹 “ 𝑔 ) ∈ ( 𝑉 ‘ 𝐼 ) ) ) ) |
82 |
24 34 81
|
3bitr4rd |
⊢ ( 𝜑 → ( 𝑔 ∈ ( 𝑊 ‘ ( 𝐹 “ 𝐼 ) ) ↔ 𝑔 ∈ ( ◡ 𝐺 “ ( 𝑉 ‘ 𝐼 ) ) ) ) |
83 |
82
|
eqrdv |
⊢ ( 𝜑 → ( 𝑊 ‘ ( 𝐹 “ 𝐼 ) ) = ( ◡ 𝐺 “ ( 𝑉 ‘ 𝐼 ) ) ) |