| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmpreimacn.t |
|- T = ( Spec ` R ) |
| 2 |
|
rhmpreimacn.u |
|- U = ( Spec ` S ) |
| 3 |
|
rhmpreimacn.a |
|- A = ( PrmIdeal ` R ) |
| 4 |
|
rhmpreimacn.b |
|- B = ( PrmIdeal ` S ) |
| 5 |
|
rhmpreimacn.j |
|- J = ( TopOpen ` T ) |
| 6 |
|
rhmpreimacn.k |
|- K = ( TopOpen ` U ) |
| 7 |
|
rhmpreimacn.g |
|- G = ( i e. B |-> ( `' F " i ) ) |
| 8 |
|
rhmpreimacn.r |
|- ( ph -> R e. CRing ) |
| 9 |
|
rhmpreimacn.s |
|- ( ph -> S e. CRing ) |
| 10 |
|
rhmpreimacn.f |
|- ( ph -> F e. ( R RingHom S ) ) |
| 11 |
|
rhmpreimacn.1 |
|- ( ph -> ran F = ( Base ` S ) ) |
| 12 |
|
rhmpreimacnlem.1 |
|- ( ph -> I e. ( LIdeal ` R ) ) |
| 13 |
|
rhmpreimacnlem.v |
|- V = ( j e. ( LIdeal ` R ) |-> { k e. A | j C_ k } ) |
| 14 |
|
rhmpreimacnlem.w |
|- W = ( j e. ( LIdeal ` S ) |-> { k e. B | j C_ k } ) |
| 15 |
|
imaeq2 |
|- ( i = g -> ( `' F " i ) = ( `' F " g ) ) |
| 16 |
|
simpr |
|- ( ( ph /\ g e. B ) -> g e. B ) |
| 17 |
10
|
elexd |
|- ( ph -> F e. _V ) |
| 18 |
|
cnvexg |
|- ( F e. _V -> `' F e. _V ) |
| 19 |
|
imaexg |
|- ( `' F e. _V -> ( `' F " g ) e. _V ) |
| 20 |
17 18 19
|
3syl |
|- ( ph -> ( `' F " g ) e. _V ) |
| 21 |
20
|
adantr |
|- ( ( ph /\ g e. B ) -> ( `' F " g ) e. _V ) |
| 22 |
7 15 16 21
|
fvmptd3 |
|- ( ( ph /\ g e. B ) -> ( G ` g ) = ( `' F " g ) ) |
| 23 |
22
|
eleq1d |
|- ( ( ph /\ g e. B ) -> ( ( G ` g ) e. ( V ` I ) <-> ( `' F " g ) e. ( V ` I ) ) ) |
| 24 |
23
|
pm5.32da |
|- ( ph -> ( ( g e. B /\ ( G ` g ) e. ( V ` I ) ) <-> ( g e. B /\ ( `' F " g ) e. ( V ` I ) ) ) ) |
| 25 |
9
|
adantr |
|- ( ( ph /\ i e. B ) -> S e. CRing ) |
| 26 |
10
|
adantr |
|- ( ( ph /\ i e. B ) -> F e. ( R RingHom S ) ) |
| 27 |
|
simpr |
|- ( ( ph /\ i e. B ) -> i e. B ) |
| 28 |
27 4
|
eleqtrdi |
|- ( ( ph /\ i e. B ) -> i e. ( PrmIdeal ` S ) ) |
| 29 |
3
|
rhmpreimaprmidl |
|- ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ i e. ( PrmIdeal ` S ) ) -> ( `' F " i ) e. A ) |
| 30 |
25 26 28 29
|
syl21anc |
|- ( ( ph /\ i e. B ) -> ( `' F " i ) e. A ) |
| 31 |
30 7
|
fmptd |
|- ( ph -> G : B --> A ) |
| 32 |
31
|
ffnd |
|- ( ph -> G Fn B ) |
| 33 |
|
elpreima |
|- ( G Fn B -> ( g e. ( `' G " ( V ` I ) ) <-> ( g e. B /\ ( G ` g ) e. ( V ` I ) ) ) ) |
| 34 |
32 33
|
syl |
|- ( ph -> ( g e. ( `' G " ( V ` I ) ) <-> ( g e. B /\ ( G ` g ) e. ( V ` I ) ) ) ) |
| 35 |
|
sseq1 |
|- ( j = ( F " I ) -> ( j C_ k <-> ( F " I ) C_ k ) ) |
| 36 |
35
|
rabbidv |
|- ( j = ( F " I ) -> { k e. B | j C_ k } = { k e. B | ( F " I ) C_ k } ) |
| 37 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 38 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 39 |
|
eqid |
|- ( LIdeal ` S ) = ( LIdeal ` S ) |
| 40 |
37 38 39
|
rhmimaidl |
|- ( ( F e. ( R RingHom S ) /\ ran F = ( Base ` S ) /\ I e. ( LIdeal ` R ) ) -> ( F " I ) e. ( LIdeal ` S ) ) |
| 41 |
10 11 12 40
|
syl3anc |
|- ( ph -> ( F " I ) e. ( LIdeal ` S ) ) |
| 42 |
4
|
fvexi |
|- B e. _V |
| 43 |
42
|
rabex |
|- { k e. B | ( F " I ) C_ k } e. _V |
| 44 |
43
|
a1i |
|- ( ph -> { k e. B | ( F " I ) C_ k } e. _V ) |
| 45 |
14 36 41 44
|
fvmptd3 |
|- ( ph -> ( W ` ( F " I ) ) = { k e. B | ( F " I ) C_ k } ) |
| 46 |
45
|
eleq2d |
|- ( ph -> ( g e. ( W ` ( F " I ) ) <-> g e. { k e. B | ( F " I ) C_ k } ) ) |
| 47 |
|
sseq2 |
|- ( k = g -> ( ( F " I ) C_ k <-> ( F " I ) C_ g ) ) |
| 48 |
47
|
elrab |
|- ( g e. { k e. B | ( F " I ) C_ k } <-> ( g e. B /\ ( F " I ) C_ g ) ) |
| 49 |
46 48
|
bitrdi |
|- ( ph -> ( g e. ( W ` ( F " I ) ) <-> ( g e. B /\ ( F " I ) C_ g ) ) ) |
| 50 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 51 |
50 37
|
rhmf |
|- ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 52 |
10 51
|
syl |
|- ( ph -> F : ( Base ` R ) --> ( Base ` S ) ) |
| 53 |
52
|
ffund |
|- ( ph -> Fun F ) |
| 54 |
50 38
|
lidlss |
|- ( I e. ( LIdeal ` R ) -> I C_ ( Base ` R ) ) |
| 55 |
12 54
|
syl |
|- ( ph -> I C_ ( Base ` R ) ) |
| 56 |
52
|
fdmd |
|- ( ph -> dom F = ( Base ` R ) ) |
| 57 |
55 56
|
sseqtrrd |
|- ( ph -> I C_ dom F ) |
| 58 |
|
funimass3 |
|- ( ( Fun F /\ I C_ dom F ) -> ( ( F " I ) C_ g <-> I C_ ( `' F " g ) ) ) |
| 59 |
53 57 58
|
syl2anc |
|- ( ph -> ( ( F " I ) C_ g <-> I C_ ( `' F " g ) ) ) |
| 60 |
59
|
anbi2d |
|- ( ph -> ( ( g e. B /\ ( F " I ) C_ g ) <-> ( g e. B /\ I C_ ( `' F " g ) ) ) ) |
| 61 |
9
|
adantr |
|- ( ( ph /\ g e. B ) -> S e. CRing ) |
| 62 |
10
|
adantr |
|- ( ( ph /\ g e. B ) -> F e. ( R RingHom S ) ) |
| 63 |
16 4
|
eleqtrdi |
|- ( ( ph /\ g e. B ) -> g e. ( PrmIdeal ` S ) ) |
| 64 |
3
|
rhmpreimaprmidl |
|- ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ g e. ( PrmIdeal ` S ) ) -> ( `' F " g ) e. A ) |
| 65 |
61 62 63 64
|
syl21anc |
|- ( ( ph /\ g e. B ) -> ( `' F " g ) e. A ) |
| 66 |
65
|
biantrurd |
|- ( ( ph /\ g e. B ) -> ( I C_ ( `' F " g ) <-> ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) ) |
| 67 |
66
|
pm5.32da |
|- ( ph -> ( ( g e. B /\ I C_ ( `' F " g ) ) <-> ( g e. B /\ ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) ) ) |
| 68 |
49 60 67
|
3bitrd |
|- ( ph -> ( g e. ( W ` ( F " I ) ) <-> ( g e. B /\ ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) ) ) |
| 69 |
|
sseq2 |
|- ( k = ( `' F " g ) -> ( I C_ k <-> I C_ ( `' F " g ) ) ) |
| 70 |
69
|
elrab |
|- ( ( `' F " g ) e. { k e. A | I C_ k } <-> ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) |
| 71 |
70
|
anbi2i |
|- ( ( g e. B /\ ( `' F " g ) e. { k e. A | I C_ k } ) <-> ( g e. B /\ ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) ) |
| 72 |
68 71
|
bitr4di |
|- ( ph -> ( g e. ( W ` ( F " I ) ) <-> ( g e. B /\ ( `' F " g ) e. { k e. A | I C_ k } ) ) ) |
| 73 |
|
sseq1 |
|- ( j = I -> ( j C_ k <-> I C_ k ) ) |
| 74 |
73
|
rabbidv |
|- ( j = I -> { k e. A | j C_ k } = { k e. A | I C_ k } ) |
| 75 |
3
|
fvexi |
|- A e. _V |
| 76 |
75
|
rabex |
|- { k e. A | I C_ k } e. _V |
| 77 |
76
|
a1i |
|- ( ph -> { k e. A | I C_ k } e. _V ) |
| 78 |
13 74 12 77
|
fvmptd3 |
|- ( ph -> ( V ` I ) = { k e. A | I C_ k } ) |
| 79 |
78
|
eleq2d |
|- ( ph -> ( ( `' F " g ) e. ( V ` I ) <-> ( `' F " g ) e. { k e. A | I C_ k } ) ) |
| 80 |
79
|
anbi2d |
|- ( ph -> ( ( g e. B /\ ( `' F " g ) e. ( V ` I ) ) <-> ( g e. B /\ ( `' F " g ) e. { k e. A | I C_ k } ) ) ) |
| 81 |
72 80
|
bitr4d |
|- ( ph -> ( g e. ( W ` ( F " I ) ) <-> ( g e. B /\ ( `' F " g ) e. ( V ` I ) ) ) ) |
| 82 |
24 34 81
|
3bitr4rd |
|- ( ph -> ( g e. ( W ` ( F " I ) ) <-> g e. ( `' G " ( V ` I ) ) ) ) |
| 83 |
82
|
eqrdv |
|- ( ph -> ( W ` ( F " I ) ) = ( `' G " ( V ` I ) ) ) |