Step |
Hyp |
Ref |
Expression |
1 |
|
rhmpreimacn.t |
|- T = ( Spec ` R ) |
2 |
|
rhmpreimacn.u |
|- U = ( Spec ` S ) |
3 |
|
rhmpreimacn.a |
|- A = ( PrmIdeal ` R ) |
4 |
|
rhmpreimacn.b |
|- B = ( PrmIdeal ` S ) |
5 |
|
rhmpreimacn.j |
|- J = ( TopOpen ` T ) |
6 |
|
rhmpreimacn.k |
|- K = ( TopOpen ` U ) |
7 |
|
rhmpreimacn.g |
|- G = ( i e. B |-> ( `' F " i ) ) |
8 |
|
rhmpreimacn.r |
|- ( ph -> R e. CRing ) |
9 |
|
rhmpreimacn.s |
|- ( ph -> S e. CRing ) |
10 |
|
rhmpreimacn.f |
|- ( ph -> F e. ( R RingHom S ) ) |
11 |
|
rhmpreimacn.1 |
|- ( ph -> ran F = ( Base ` S ) ) |
12 |
|
rhmpreimacnlem.1 |
|- ( ph -> I e. ( LIdeal ` R ) ) |
13 |
|
rhmpreimacnlem.v |
|- V = ( j e. ( LIdeal ` R ) |-> { k e. A | j C_ k } ) |
14 |
|
rhmpreimacnlem.w |
|- W = ( j e. ( LIdeal ` S ) |-> { k e. B | j C_ k } ) |
15 |
|
imaeq2 |
|- ( i = g -> ( `' F " i ) = ( `' F " g ) ) |
16 |
|
simpr |
|- ( ( ph /\ g e. B ) -> g e. B ) |
17 |
10
|
elexd |
|- ( ph -> F e. _V ) |
18 |
|
cnvexg |
|- ( F e. _V -> `' F e. _V ) |
19 |
|
imaexg |
|- ( `' F e. _V -> ( `' F " g ) e. _V ) |
20 |
17 18 19
|
3syl |
|- ( ph -> ( `' F " g ) e. _V ) |
21 |
20
|
adantr |
|- ( ( ph /\ g e. B ) -> ( `' F " g ) e. _V ) |
22 |
7 15 16 21
|
fvmptd3 |
|- ( ( ph /\ g e. B ) -> ( G ` g ) = ( `' F " g ) ) |
23 |
22
|
eleq1d |
|- ( ( ph /\ g e. B ) -> ( ( G ` g ) e. ( V ` I ) <-> ( `' F " g ) e. ( V ` I ) ) ) |
24 |
23
|
pm5.32da |
|- ( ph -> ( ( g e. B /\ ( G ` g ) e. ( V ` I ) ) <-> ( g e. B /\ ( `' F " g ) e. ( V ` I ) ) ) ) |
25 |
9
|
adantr |
|- ( ( ph /\ i e. B ) -> S e. CRing ) |
26 |
10
|
adantr |
|- ( ( ph /\ i e. B ) -> F e. ( R RingHom S ) ) |
27 |
|
simpr |
|- ( ( ph /\ i e. B ) -> i e. B ) |
28 |
27 4
|
eleqtrdi |
|- ( ( ph /\ i e. B ) -> i e. ( PrmIdeal ` S ) ) |
29 |
3
|
rhmpreimaprmidl |
|- ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ i e. ( PrmIdeal ` S ) ) -> ( `' F " i ) e. A ) |
30 |
25 26 28 29
|
syl21anc |
|- ( ( ph /\ i e. B ) -> ( `' F " i ) e. A ) |
31 |
30 7
|
fmptd |
|- ( ph -> G : B --> A ) |
32 |
31
|
ffnd |
|- ( ph -> G Fn B ) |
33 |
|
elpreima |
|- ( G Fn B -> ( g e. ( `' G " ( V ` I ) ) <-> ( g e. B /\ ( G ` g ) e. ( V ` I ) ) ) ) |
34 |
32 33
|
syl |
|- ( ph -> ( g e. ( `' G " ( V ` I ) ) <-> ( g e. B /\ ( G ` g ) e. ( V ` I ) ) ) ) |
35 |
|
sseq1 |
|- ( j = ( F " I ) -> ( j C_ k <-> ( F " I ) C_ k ) ) |
36 |
35
|
rabbidv |
|- ( j = ( F " I ) -> { k e. B | j C_ k } = { k e. B | ( F " I ) C_ k } ) |
37 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
38 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
39 |
|
eqid |
|- ( LIdeal ` S ) = ( LIdeal ` S ) |
40 |
37 38 39
|
rhmimaidl |
|- ( ( F e. ( R RingHom S ) /\ ran F = ( Base ` S ) /\ I e. ( LIdeal ` R ) ) -> ( F " I ) e. ( LIdeal ` S ) ) |
41 |
10 11 12 40
|
syl3anc |
|- ( ph -> ( F " I ) e. ( LIdeal ` S ) ) |
42 |
4
|
fvexi |
|- B e. _V |
43 |
42
|
rabex |
|- { k e. B | ( F " I ) C_ k } e. _V |
44 |
43
|
a1i |
|- ( ph -> { k e. B | ( F " I ) C_ k } e. _V ) |
45 |
14 36 41 44
|
fvmptd3 |
|- ( ph -> ( W ` ( F " I ) ) = { k e. B | ( F " I ) C_ k } ) |
46 |
45
|
eleq2d |
|- ( ph -> ( g e. ( W ` ( F " I ) ) <-> g e. { k e. B | ( F " I ) C_ k } ) ) |
47 |
|
sseq2 |
|- ( k = g -> ( ( F " I ) C_ k <-> ( F " I ) C_ g ) ) |
48 |
47
|
elrab |
|- ( g e. { k e. B | ( F " I ) C_ k } <-> ( g e. B /\ ( F " I ) C_ g ) ) |
49 |
46 48
|
bitrdi |
|- ( ph -> ( g e. ( W ` ( F " I ) ) <-> ( g e. B /\ ( F " I ) C_ g ) ) ) |
50 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
51 |
50 37
|
rhmf |
|- ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> ( Base ` S ) ) |
52 |
10 51
|
syl |
|- ( ph -> F : ( Base ` R ) --> ( Base ` S ) ) |
53 |
52
|
ffund |
|- ( ph -> Fun F ) |
54 |
50 38
|
lidlss |
|- ( I e. ( LIdeal ` R ) -> I C_ ( Base ` R ) ) |
55 |
12 54
|
syl |
|- ( ph -> I C_ ( Base ` R ) ) |
56 |
52
|
fdmd |
|- ( ph -> dom F = ( Base ` R ) ) |
57 |
55 56
|
sseqtrrd |
|- ( ph -> I C_ dom F ) |
58 |
|
funimass3 |
|- ( ( Fun F /\ I C_ dom F ) -> ( ( F " I ) C_ g <-> I C_ ( `' F " g ) ) ) |
59 |
53 57 58
|
syl2anc |
|- ( ph -> ( ( F " I ) C_ g <-> I C_ ( `' F " g ) ) ) |
60 |
59
|
anbi2d |
|- ( ph -> ( ( g e. B /\ ( F " I ) C_ g ) <-> ( g e. B /\ I C_ ( `' F " g ) ) ) ) |
61 |
9
|
adantr |
|- ( ( ph /\ g e. B ) -> S e. CRing ) |
62 |
10
|
adantr |
|- ( ( ph /\ g e. B ) -> F e. ( R RingHom S ) ) |
63 |
16 4
|
eleqtrdi |
|- ( ( ph /\ g e. B ) -> g e. ( PrmIdeal ` S ) ) |
64 |
3
|
rhmpreimaprmidl |
|- ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ g e. ( PrmIdeal ` S ) ) -> ( `' F " g ) e. A ) |
65 |
61 62 63 64
|
syl21anc |
|- ( ( ph /\ g e. B ) -> ( `' F " g ) e. A ) |
66 |
65
|
biantrurd |
|- ( ( ph /\ g e. B ) -> ( I C_ ( `' F " g ) <-> ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) ) |
67 |
66
|
pm5.32da |
|- ( ph -> ( ( g e. B /\ I C_ ( `' F " g ) ) <-> ( g e. B /\ ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) ) ) |
68 |
49 60 67
|
3bitrd |
|- ( ph -> ( g e. ( W ` ( F " I ) ) <-> ( g e. B /\ ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) ) ) |
69 |
|
sseq2 |
|- ( k = ( `' F " g ) -> ( I C_ k <-> I C_ ( `' F " g ) ) ) |
70 |
69
|
elrab |
|- ( ( `' F " g ) e. { k e. A | I C_ k } <-> ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) |
71 |
70
|
anbi2i |
|- ( ( g e. B /\ ( `' F " g ) e. { k e. A | I C_ k } ) <-> ( g e. B /\ ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) ) |
72 |
68 71
|
bitr4di |
|- ( ph -> ( g e. ( W ` ( F " I ) ) <-> ( g e. B /\ ( `' F " g ) e. { k e. A | I C_ k } ) ) ) |
73 |
|
sseq1 |
|- ( j = I -> ( j C_ k <-> I C_ k ) ) |
74 |
73
|
rabbidv |
|- ( j = I -> { k e. A | j C_ k } = { k e. A | I C_ k } ) |
75 |
3
|
fvexi |
|- A e. _V |
76 |
75
|
rabex |
|- { k e. A | I C_ k } e. _V |
77 |
76
|
a1i |
|- ( ph -> { k e. A | I C_ k } e. _V ) |
78 |
13 74 12 77
|
fvmptd3 |
|- ( ph -> ( V ` I ) = { k e. A | I C_ k } ) |
79 |
78
|
eleq2d |
|- ( ph -> ( ( `' F " g ) e. ( V ` I ) <-> ( `' F " g ) e. { k e. A | I C_ k } ) ) |
80 |
79
|
anbi2d |
|- ( ph -> ( ( g e. B /\ ( `' F " g ) e. ( V ` I ) ) <-> ( g e. B /\ ( `' F " g ) e. { k e. A | I C_ k } ) ) ) |
81 |
72 80
|
bitr4d |
|- ( ph -> ( g e. ( W ` ( F " I ) ) <-> ( g e. B /\ ( `' F " g ) e. ( V ` I ) ) ) ) |
82 |
24 34 81
|
3bitr4rd |
|- ( ph -> ( g e. ( W ` ( F " I ) ) <-> g e. ( `' G " ( V ` I ) ) ) ) |
83 |
82
|
eqrdv |
|- ( ph -> ( W ` ( F " I ) ) = ( `' G " ( V ` I ) ) ) |