| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmpreimacn.t |  |-  T = ( Spec ` R ) | 
						
							| 2 |  | rhmpreimacn.u |  |-  U = ( Spec ` S ) | 
						
							| 3 |  | rhmpreimacn.a |  |-  A = ( PrmIdeal ` R ) | 
						
							| 4 |  | rhmpreimacn.b |  |-  B = ( PrmIdeal ` S ) | 
						
							| 5 |  | rhmpreimacn.j |  |-  J = ( TopOpen ` T ) | 
						
							| 6 |  | rhmpreimacn.k |  |-  K = ( TopOpen ` U ) | 
						
							| 7 |  | rhmpreimacn.g |  |-  G = ( i e. B |-> ( `' F " i ) ) | 
						
							| 8 |  | rhmpreimacn.r |  |-  ( ph -> R e. CRing ) | 
						
							| 9 |  | rhmpreimacn.s |  |-  ( ph -> S e. CRing ) | 
						
							| 10 |  | rhmpreimacn.f |  |-  ( ph -> F e. ( R RingHom S ) ) | 
						
							| 11 |  | rhmpreimacn.1 |  |-  ( ph -> ran F = ( Base ` S ) ) | 
						
							| 12 |  | rhmpreimacnlem.1 |  |-  ( ph -> I e. ( LIdeal ` R ) ) | 
						
							| 13 |  | rhmpreimacnlem.v |  |-  V = ( j e. ( LIdeal ` R ) |-> { k e. A | j C_ k } ) | 
						
							| 14 |  | rhmpreimacnlem.w |  |-  W = ( j e. ( LIdeal ` S ) |-> { k e. B | j C_ k } ) | 
						
							| 15 |  | imaeq2 |  |-  ( i = g -> ( `' F " i ) = ( `' F " g ) ) | 
						
							| 16 |  | simpr |  |-  ( ( ph /\ g e. B ) -> g e. B ) | 
						
							| 17 | 10 | elexd |  |-  ( ph -> F e. _V ) | 
						
							| 18 |  | cnvexg |  |-  ( F e. _V -> `' F e. _V ) | 
						
							| 19 |  | imaexg |  |-  ( `' F e. _V -> ( `' F " g ) e. _V ) | 
						
							| 20 | 17 18 19 | 3syl |  |-  ( ph -> ( `' F " g ) e. _V ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ph /\ g e. B ) -> ( `' F " g ) e. _V ) | 
						
							| 22 | 7 15 16 21 | fvmptd3 |  |-  ( ( ph /\ g e. B ) -> ( G ` g ) = ( `' F " g ) ) | 
						
							| 23 | 22 | eleq1d |  |-  ( ( ph /\ g e. B ) -> ( ( G ` g ) e. ( V ` I ) <-> ( `' F " g ) e. ( V ` I ) ) ) | 
						
							| 24 | 23 | pm5.32da |  |-  ( ph -> ( ( g e. B /\ ( G ` g ) e. ( V ` I ) ) <-> ( g e. B /\ ( `' F " g ) e. ( V ` I ) ) ) ) | 
						
							| 25 | 9 | adantr |  |-  ( ( ph /\ i e. B ) -> S e. CRing ) | 
						
							| 26 | 10 | adantr |  |-  ( ( ph /\ i e. B ) -> F e. ( R RingHom S ) ) | 
						
							| 27 |  | simpr |  |-  ( ( ph /\ i e. B ) -> i e. B ) | 
						
							| 28 | 27 4 | eleqtrdi |  |-  ( ( ph /\ i e. B ) -> i e. ( PrmIdeal ` S ) ) | 
						
							| 29 | 3 | rhmpreimaprmidl |  |-  ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ i e. ( PrmIdeal ` S ) ) -> ( `' F " i ) e. A ) | 
						
							| 30 | 25 26 28 29 | syl21anc |  |-  ( ( ph /\ i e. B ) -> ( `' F " i ) e. A ) | 
						
							| 31 | 30 7 | fmptd |  |-  ( ph -> G : B --> A ) | 
						
							| 32 | 31 | ffnd |  |-  ( ph -> G Fn B ) | 
						
							| 33 |  | elpreima |  |-  ( G Fn B -> ( g e. ( `' G " ( V ` I ) ) <-> ( g e. B /\ ( G ` g ) e. ( V ` I ) ) ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ph -> ( g e. ( `' G " ( V ` I ) ) <-> ( g e. B /\ ( G ` g ) e. ( V ` I ) ) ) ) | 
						
							| 35 |  | sseq1 |  |-  ( j = ( F " I ) -> ( j C_ k <-> ( F " I ) C_ k ) ) | 
						
							| 36 | 35 | rabbidv |  |-  ( j = ( F " I ) -> { k e. B | j C_ k } = { k e. B | ( F " I ) C_ k } ) | 
						
							| 37 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 38 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 39 |  | eqid |  |-  ( LIdeal ` S ) = ( LIdeal ` S ) | 
						
							| 40 | 37 38 39 | rhmimaidl |  |-  ( ( F e. ( R RingHom S ) /\ ran F = ( Base ` S ) /\ I e. ( LIdeal ` R ) ) -> ( F " I ) e. ( LIdeal ` S ) ) | 
						
							| 41 | 10 11 12 40 | syl3anc |  |-  ( ph -> ( F " I ) e. ( LIdeal ` S ) ) | 
						
							| 42 | 4 | fvexi |  |-  B e. _V | 
						
							| 43 | 42 | rabex |  |-  { k e. B | ( F " I ) C_ k } e. _V | 
						
							| 44 | 43 | a1i |  |-  ( ph -> { k e. B | ( F " I ) C_ k } e. _V ) | 
						
							| 45 | 14 36 41 44 | fvmptd3 |  |-  ( ph -> ( W ` ( F " I ) ) = { k e. B | ( F " I ) C_ k } ) | 
						
							| 46 | 45 | eleq2d |  |-  ( ph -> ( g e. ( W ` ( F " I ) ) <-> g e. { k e. B | ( F " I ) C_ k } ) ) | 
						
							| 47 |  | sseq2 |  |-  ( k = g -> ( ( F " I ) C_ k <-> ( F " I ) C_ g ) ) | 
						
							| 48 | 47 | elrab |  |-  ( g e. { k e. B | ( F " I ) C_ k } <-> ( g e. B /\ ( F " I ) C_ g ) ) | 
						
							| 49 | 46 48 | bitrdi |  |-  ( ph -> ( g e. ( W ` ( F " I ) ) <-> ( g e. B /\ ( F " I ) C_ g ) ) ) | 
						
							| 50 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 51 | 50 37 | rhmf |  |-  ( F e. ( R RingHom S ) -> F : ( Base ` R ) --> ( Base ` S ) ) | 
						
							| 52 | 10 51 | syl |  |-  ( ph -> F : ( Base ` R ) --> ( Base ` S ) ) | 
						
							| 53 | 52 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 54 | 50 38 | lidlss |  |-  ( I e. ( LIdeal ` R ) -> I C_ ( Base ` R ) ) | 
						
							| 55 | 12 54 | syl |  |-  ( ph -> I C_ ( Base ` R ) ) | 
						
							| 56 | 52 | fdmd |  |-  ( ph -> dom F = ( Base ` R ) ) | 
						
							| 57 | 55 56 | sseqtrrd |  |-  ( ph -> I C_ dom F ) | 
						
							| 58 |  | funimass3 |  |-  ( ( Fun F /\ I C_ dom F ) -> ( ( F " I ) C_ g <-> I C_ ( `' F " g ) ) ) | 
						
							| 59 | 53 57 58 | syl2anc |  |-  ( ph -> ( ( F " I ) C_ g <-> I C_ ( `' F " g ) ) ) | 
						
							| 60 | 59 | anbi2d |  |-  ( ph -> ( ( g e. B /\ ( F " I ) C_ g ) <-> ( g e. B /\ I C_ ( `' F " g ) ) ) ) | 
						
							| 61 | 9 | adantr |  |-  ( ( ph /\ g e. B ) -> S e. CRing ) | 
						
							| 62 | 10 | adantr |  |-  ( ( ph /\ g e. B ) -> F e. ( R RingHom S ) ) | 
						
							| 63 | 16 4 | eleqtrdi |  |-  ( ( ph /\ g e. B ) -> g e. ( PrmIdeal ` S ) ) | 
						
							| 64 | 3 | rhmpreimaprmidl |  |-  ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ g e. ( PrmIdeal ` S ) ) -> ( `' F " g ) e. A ) | 
						
							| 65 | 61 62 63 64 | syl21anc |  |-  ( ( ph /\ g e. B ) -> ( `' F " g ) e. A ) | 
						
							| 66 | 65 | biantrurd |  |-  ( ( ph /\ g e. B ) -> ( I C_ ( `' F " g ) <-> ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) ) | 
						
							| 67 | 66 | pm5.32da |  |-  ( ph -> ( ( g e. B /\ I C_ ( `' F " g ) ) <-> ( g e. B /\ ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) ) ) | 
						
							| 68 | 49 60 67 | 3bitrd |  |-  ( ph -> ( g e. ( W ` ( F " I ) ) <-> ( g e. B /\ ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) ) ) | 
						
							| 69 |  | sseq2 |  |-  ( k = ( `' F " g ) -> ( I C_ k <-> I C_ ( `' F " g ) ) ) | 
						
							| 70 | 69 | elrab |  |-  ( ( `' F " g ) e. { k e. A | I C_ k } <-> ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) | 
						
							| 71 | 70 | anbi2i |  |-  ( ( g e. B /\ ( `' F " g ) e. { k e. A | I C_ k } ) <-> ( g e. B /\ ( ( `' F " g ) e. A /\ I C_ ( `' F " g ) ) ) ) | 
						
							| 72 | 68 71 | bitr4di |  |-  ( ph -> ( g e. ( W ` ( F " I ) ) <-> ( g e. B /\ ( `' F " g ) e. { k e. A | I C_ k } ) ) ) | 
						
							| 73 |  | sseq1 |  |-  ( j = I -> ( j C_ k <-> I C_ k ) ) | 
						
							| 74 | 73 | rabbidv |  |-  ( j = I -> { k e. A | j C_ k } = { k e. A | I C_ k } ) | 
						
							| 75 | 3 | fvexi |  |-  A e. _V | 
						
							| 76 | 75 | rabex |  |-  { k e. A | I C_ k } e. _V | 
						
							| 77 | 76 | a1i |  |-  ( ph -> { k e. A | I C_ k } e. _V ) | 
						
							| 78 | 13 74 12 77 | fvmptd3 |  |-  ( ph -> ( V ` I ) = { k e. A | I C_ k } ) | 
						
							| 79 | 78 | eleq2d |  |-  ( ph -> ( ( `' F " g ) e. ( V ` I ) <-> ( `' F " g ) e. { k e. A | I C_ k } ) ) | 
						
							| 80 | 79 | anbi2d |  |-  ( ph -> ( ( g e. B /\ ( `' F " g ) e. ( V ` I ) ) <-> ( g e. B /\ ( `' F " g ) e. { k e. A | I C_ k } ) ) ) | 
						
							| 81 | 72 80 | bitr4d |  |-  ( ph -> ( g e. ( W ` ( F " I ) ) <-> ( g e. B /\ ( `' F " g ) e. ( V ` I ) ) ) ) | 
						
							| 82 | 24 34 81 | 3bitr4rd |  |-  ( ph -> ( g e. ( W ` ( F " I ) ) <-> g e. ( `' G " ( V ` I ) ) ) ) | 
						
							| 83 | 82 | eqrdv |  |-  ( ph -> ( W ` ( F " I ) ) = ( `' G " ( V ` I ) ) ) |