| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rhmpreimacn.t |
|- T = ( Spec ` R ) |
| 2 |
|
rhmpreimacn.u |
|- U = ( Spec ` S ) |
| 3 |
|
rhmpreimacn.a |
|- A = ( PrmIdeal ` R ) |
| 4 |
|
rhmpreimacn.b |
|- B = ( PrmIdeal ` S ) |
| 5 |
|
rhmpreimacn.j |
|- J = ( TopOpen ` T ) |
| 6 |
|
rhmpreimacn.k |
|- K = ( TopOpen ` U ) |
| 7 |
|
rhmpreimacn.g |
|- G = ( i e. B |-> ( `' F " i ) ) |
| 8 |
|
rhmpreimacn.r |
|- ( ph -> R e. CRing ) |
| 9 |
|
rhmpreimacn.s |
|- ( ph -> S e. CRing ) |
| 10 |
|
rhmpreimacn.f |
|- ( ph -> F e. ( R RingHom S ) ) |
| 11 |
|
rhmpreimacn.1 |
|- ( ph -> ran F = ( Base ` S ) ) |
| 12 |
2 6 4
|
zartopon |
|- ( S e. CRing -> K e. ( TopOn ` B ) ) |
| 13 |
9 12
|
syl |
|- ( ph -> K e. ( TopOn ` B ) ) |
| 14 |
1 5 3
|
zartopon |
|- ( R e. CRing -> J e. ( TopOn ` A ) ) |
| 15 |
8 14
|
syl |
|- ( ph -> J e. ( TopOn ` A ) ) |
| 16 |
9
|
adantr |
|- ( ( ph /\ i e. B ) -> S e. CRing ) |
| 17 |
10
|
adantr |
|- ( ( ph /\ i e. B ) -> F e. ( R RingHom S ) ) |
| 18 |
|
simpr |
|- ( ( ph /\ i e. B ) -> i e. B ) |
| 19 |
18 4
|
eleqtrdi |
|- ( ( ph /\ i e. B ) -> i e. ( PrmIdeal ` S ) ) |
| 20 |
3
|
rhmpreimaprmidl |
|- ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ i e. ( PrmIdeal ` S ) ) -> ( `' F " i ) e. A ) |
| 21 |
16 17 19 20
|
syl21anc |
|- ( ( ph /\ i e. B ) -> ( `' F " i ) e. A ) |
| 22 |
21 7
|
fmptd |
|- ( ph -> G : B --> A ) |
| 23 |
4
|
fvexi |
|- B e. _V |
| 24 |
23
|
rabex |
|- { k e. B | j C_ k } e. _V |
| 25 |
|
sseq1 |
|- ( l = j -> ( l C_ k <-> j C_ k ) ) |
| 26 |
25
|
rabbidv |
|- ( l = j -> { k e. B | l C_ k } = { k e. B | j C_ k } ) |
| 27 |
26
|
cbvmptv |
|- ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( j e. ( LIdeal ` S ) |-> { k e. B | j C_ k } ) |
| 28 |
24 27
|
fnmpti |
|- ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) Fn ( LIdeal ` S ) |
| 29 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> F e. ( R RingHom S ) ) |
| 30 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ran F = ( Base ` S ) ) |
| 31 |
|
simplr |
|- ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> a e. ( LIdeal ` R ) ) |
| 32 |
|
eqid |
|- ( Base ` S ) = ( Base ` S ) |
| 33 |
|
eqid |
|- ( LIdeal ` R ) = ( LIdeal ` R ) |
| 34 |
|
eqid |
|- ( LIdeal ` S ) = ( LIdeal ` S ) |
| 35 |
32 33 34
|
rhmimaidl |
|- ( ( F e. ( R RingHom S ) /\ ran F = ( Base ` S ) /\ a e. ( LIdeal ` R ) ) -> ( F " a ) e. ( LIdeal ` S ) ) |
| 36 |
29 30 31 35
|
syl3anc |
|- ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( F " a ) e. ( LIdeal ` S ) ) |
| 37 |
|
fveqeq2 |
|- ( b = ( F " a ) -> ( ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) <-> ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` ( F " a ) ) = ( `' G " x ) ) ) |
| 38 |
37
|
adantl |
|- ( ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) /\ b = ( F " a ) ) -> ( ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) <-> ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` ( F " a ) ) = ( `' G " x ) ) ) |
| 39 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> R e. CRing ) |
| 40 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> S e. CRing ) |
| 41 |
25
|
rabbidv |
|- ( l = j -> { k e. A | l C_ k } = { k e. A | j C_ k } ) |
| 42 |
41
|
cbvmptv |
|- ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) = ( j e. ( LIdeal ` R ) |-> { k e. A | j C_ k } ) |
| 43 |
1 2 3 4 5 6 7 39 40 29 30 31 42 27
|
rhmpreimacnlem |
|- ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` ( F " a ) ) = ( `' G " ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) ) ) |
| 44 |
|
simpr |
|- ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) |
| 45 |
44
|
imaeq2d |
|- ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( `' G " ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) ) = ( `' G " x ) ) |
| 46 |
43 45
|
eqtrd |
|- ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` ( F " a ) ) = ( `' G " x ) ) |
| 47 |
36 38 46
|
rspcedvd |
|- ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> E. b e. ( LIdeal ` S ) ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) ) |
| 48 |
3
|
fvexi |
|- A e. _V |
| 49 |
48
|
rabex |
|- { k e. A | j C_ k } e. _V |
| 50 |
49 42
|
fnmpti |
|- ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) Fn ( LIdeal ` R ) |
| 51 |
|
simpr |
|- ( ( ph /\ x e. ( Clsd ` J ) ) -> x e. ( Clsd ` J ) ) |
| 52 |
8
|
adantr |
|- ( ( ph /\ x e. ( Clsd ` J ) ) -> R e. CRing ) |
| 53 |
1 5 3 42
|
zartopn |
|- ( R e. CRing -> ( J e. ( TopOn ` A ) /\ ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) = ( Clsd ` J ) ) ) |
| 54 |
53
|
simprd |
|- ( R e. CRing -> ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) = ( Clsd ` J ) ) |
| 55 |
52 54
|
syl |
|- ( ( ph /\ x e. ( Clsd ` J ) ) -> ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) = ( Clsd ` J ) ) |
| 56 |
51 55
|
eleqtrrd |
|- ( ( ph /\ x e. ( Clsd ` J ) ) -> x e. ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ) |
| 57 |
|
fvelrnb |
|- ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) Fn ( LIdeal ` R ) -> ( x e. ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) <-> E. a e. ( LIdeal ` R ) ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) ) |
| 58 |
57
|
biimpa |
|- ( ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) Fn ( LIdeal ` R ) /\ x e. ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ) -> E. a e. ( LIdeal ` R ) ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) |
| 59 |
50 56 58
|
sylancr |
|- ( ( ph /\ x e. ( Clsd ` J ) ) -> E. a e. ( LIdeal ` R ) ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) |
| 60 |
47 59
|
r19.29a |
|- ( ( ph /\ x e. ( Clsd ` J ) ) -> E. b e. ( LIdeal ` S ) ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) ) |
| 61 |
|
fvelrnb |
|- ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) Fn ( LIdeal ` S ) -> ( ( `' G " x ) e. ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) <-> E. b e. ( LIdeal ` S ) ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) ) ) |
| 62 |
61
|
biimpar |
|- ( ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) Fn ( LIdeal ` S ) /\ E. b e. ( LIdeal ` S ) ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) ) -> ( `' G " x ) e. ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ) |
| 63 |
28 60 62
|
sylancr |
|- ( ( ph /\ x e. ( Clsd ` J ) ) -> ( `' G " x ) e. ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ) |
| 64 |
2 6 4 27
|
zartopn |
|- ( S e. CRing -> ( K e. ( TopOn ` B ) /\ ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( Clsd ` K ) ) ) |
| 65 |
64
|
simprd |
|- ( S e. CRing -> ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( Clsd ` K ) ) |
| 66 |
9 65
|
syl |
|- ( ph -> ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( Clsd ` K ) ) |
| 67 |
66
|
adantr |
|- ( ( ph /\ x e. ( Clsd ` J ) ) -> ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( Clsd ` K ) ) |
| 68 |
63 67
|
eleqtrd |
|- ( ( ph /\ x e. ( Clsd ` J ) ) -> ( `' G " x ) e. ( Clsd ` K ) ) |
| 69 |
68
|
ralrimiva |
|- ( ph -> A. x e. ( Clsd ` J ) ( `' G " x ) e. ( Clsd ` K ) ) |
| 70 |
|
iscncl |
|- ( ( K e. ( TopOn ` B ) /\ J e. ( TopOn ` A ) ) -> ( G e. ( K Cn J ) <-> ( G : B --> A /\ A. x e. ( Clsd ` J ) ( `' G " x ) e. ( Clsd ` K ) ) ) ) |
| 71 |
70
|
biimpar |
|- ( ( ( K e. ( TopOn ` B ) /\ J e. ( TopOn ` A ) ) /\ ( G : B --> A /\ A. x e. ( Clsd ` J ) ( `' G " x ) e. ( Clsd ` K ) ) ) -> G e. ( K Cn J ) ) |
| 72 |
13 15 22 69 71
|
syl22anc |
|- ( ph -> G e. ( K Cn J ) ) |