| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmpreimacn.t |  |-  T = ( Spec ` R ) | 
						
							| 2 |  | rhmpreimacn.u |  |-  U = ( Spec ` S ) | 
						
							| 3 |  | rhmpreimacn.a |  |-  A = ( PrmIdeal ` R ) | 
						
							| 4 |  | rhmpreimacn.b |  |-  B = ( PrmIdeal ` S ) | 
						
							| 5 |  | rhmpreimacn.j |  |-  J = ( TopOpen ` T ) | 
						
							| 6 |  | rhmpreimacn.k |  |-  K = ( TopOpen ` U ) | 
						
							| 7 |  | rhmpreimacn.g |  |-  G = ( i e. B |-> ( `' F " i ) ) | 
						
							| 8 |  | rhmpreimacn.r |  |-  ( ph -> R e. CRing ) | 
						
							| 9 |  | rhmpreimacn.s |  |-  ( ph -> S e. CRing ) | 
						
							| 10 |  | rhmpreimacn.f |  |-  ( ph -> F e. ( R RingHom S ) ) | 
						
							| 11 |  | rhmpreimacn.1 |  |-  ( ph -> ran F = ( Base ` S ) ) | 
						
							| 12 | 2 6 4 | zartopon |  |-  ( S e. CRing -> K e. ( TopOn ` B ) ) | 
						
							| 13 | 9 12 | syl |  |-  ( ph -> K e. ( TopOn ` B ) ) | 
						
							| 14 | 1 5 3 | zartopon |  |-  ( R e. CRing -> J e. ( TopOn ` A ) ) | 
						
							| 15 | 8 14 | syl |  |-  ( ph -> J e. ( TopOn ` A ) ) | 
						
							| 16 | 9 | adantr |  |-  ( ( ph /\ i e. B ) -> S e. CRing ) | 
						
							| 17 | 10 | adantr |  |-  ( ( ph /\ i e. B ) -> F e. ( R RingHom S ) ) | 
						
							| 18 |  | simpr |  |-  ( ( ph /\ i e. B ) -> i e. B ) | 
						
							| 19 | 18 4 | eleqtrdi |  |-  ( ( ph /\ i e. B ) -> i e. ( PrmIdeal ` S ) ) | 
						
							| 20 | 3 | rhmpreimaprmidl |  |-  ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ i e. ( PrmIdeal ` S ) ) -> ( `' F " i ) e. A ) | 
						
							| 21 | 16 17 19 20 | syl21anc |  |-  ( ( ph /\ i e. B ) -> ( `' F " i ) e. A ) | 
						
							| 22 | 21 7 | fmptd |  |-  ( ph -> G : B --> A ) | 
						
							| 23 | 4 | fvexi |  |-  B e. _V | 
						
							| 24 | 23 | rabex |  |-  { k e. B | j C_ k } e. _V | 
						
							| 25 |  | sseq1 |  |-  ( l = j -> ( l C_ k <-> j C_ k ) ) | 
						
							| 26 | 25 | rabbidv |  |-  ( l = j -> { k e. B | l C_ k } = { k e. B | j C_ k } ) | 
						
							| 27 | 26 | cbvmptv |  |-  ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( j e. ( LIdeal ` S ) |-> { k e. B | j C_ k } ) | 
						
							| 28 | 24 27 | fnmpti |  |-  ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) Fn ( LIdeal ` S ) | 
						
							| 29 | 10 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> F e. ( R RingHom S ) ) | 
						
							| 30 | 11 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ran F = ( Base ` S ) ) | 
						
							| 31 |  | simplr |  |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> a e. ( LIdeal ` R ) ) | 
						
							| 32 |  | eqid |  |-  ( Base ` S ) = ( Base ` S ) | 
						
							| 33 |  | eqid |  |-  ( LIdeal ` R ) = ( LIdeal ` R ) | 
						
							| 34 |  | eqid |  |-  ( LIdeal ` S ) = ( LIdeal ` S ) | 
						
							| 35 | 32 33 34 | rhmimaidl |  |-  ( ( F e. ( R RingHom S ) /\ ran F = ( Base ` S ) /\ a e. ( LIdeal ` R ) ) -> ( F " a ) e. ( LIdeal ` S ) ) | 
						
							| 36 | 29 30 31 35 | syl3anc |  |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( F " a ) e. ( LIdeal ` S ) ) | 
						
							| 37 |  | fveqeq2 |  |-  ( b = ( F " a ) -> ( ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) <-> ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` ( F " a ) ) = ( `' G " x ) ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) /\ b = ( F " a ) ) -> ( ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) <-> ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` ( F " a ) ) = ( `' G " x ) ) ) | 
						
							| 39 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> R e. CRing ) | 
						
							| 40 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> S e. CRing ) | 
						
							| 41 | 25 | rabbidv |  |-  ( l = j -> { k e. A | l C_ k } = { k e. A | j C_ k } ) | 
						
							| 42 | 41 | cbvmptv |  |-  ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) = ( j e. ( LIdeal ` R ) |-> { k e. A | j C_ k } ) | 
						
							| 43 | 1 2 3 4 5 6 7 39 40 29 30 31 42 27 | rhmpreimacnlem |  |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` ( F " a ) ) = ( `' G " ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) ) ) | 
						
							| 44 |  | simpr |  |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) | 
						
							| 45 | 44 | imaeq2d |  |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( `' G " ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) ) = ( `' G " x ) ) | 
						
							| 46 | 43 45 | eqtrd |  |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` ( F " a ) ) = ( `' G " x ) ) | 
						
							| 47 | 36 38 46 | rspcedvd |  |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> E. b e. ( LIdeal ` S ) ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) ) | 
						
							| 48 | 3 | fvexi |  |-  A e. _V | 
						
							| 49 | 48 | rabex |  |-  { k e. A | j C_ k } e. _V | 
						
							| 50 | 49 42 | fnmpti |  |-  ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) Fn ( LIdeal ` R ) | 
						
							| 51 |  | simpr |  |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> x e. ( Clsd ` J ) ) | 
						
							| 52 | 8 | adantr |  |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> R e. CRing ) | 
						
							| 53 | 1 5 3 42 | zartopn |  |-  ( R e. CRing -> ( J e. ( TopOn ` A ) /\ ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) = ( Clsd ` J ) ) ) | 
						
							| 54 | 53 | simprd |  |-  ( R e. CRing -> ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) = ( Clsd ` J ) ) | 
						
							| 55 | 52 54 | syl |  |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) = ( Clsd ` J ) ) | 
						
							| 56 | 51 55 | eleqtrrd |  |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> x e. ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ) | 
						
							| 57 |  | fvelrnb |  |-  ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) Fn ( LIdeal ` R ) -> ( x e. ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) <-> E. a e. ( LIdeal ` R ) ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) ) | 
						
							| 58 | 57 | biimpa |  |-  ( ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) Fn ( LIdeal ` R ) /\ x e. ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ) -> E. a e. ( LIdeal ` R ) ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) | 
						
							| 59 | 50 56 58 | sylancr |  |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> E. a e. ( LIdeal ` R ) ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) | 
						
							| 60 | 47 59 | r19.29a |  |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> E. b e. ( LIdeal ` S ) ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) ) | 
						
							| 61 |  | fvelrnb |  |-  ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) Fn ( LIdeal ` S ) -> ( ( `' G " x ) e. ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) <-> E. b e. ( LIdeal ` S ) ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) ) ) | 
						
							| 62 | 61 | biimpar |  |-  ( ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) Fn ( LIdeal ` S ) /\ E. b e. ( LIdeal ` S ) ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) ) -> ( `' G " x ) e. ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ) | 
						
							| 63 | 28 60 62 | sylancr |  |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> ( `' G " x ) e. ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ) | 
						
							| 64 | 2 6 4 27 | zartopn |  |-  ( S e. CRing -> ( K e. ( TopOn ` B ) /\ ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( Clsd ` K ) ) ) | 
						
							| 65 | 64 | simprd |  |-  ( S e. CRing -> ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( Clsd ` K ) ) | 
						
							| 66 | 9 65 | syl |  |-  ( ph -> ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( Clsd ` K ) ) | 
						
							| 67 | 66 | adantr |  |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( Clsd ` K ) ) | 
						
							| 68 | 63 67 | eleqtrd |  |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> ( `' G " x ) e. ( Clsd ` K ) ) | 
						
							| 69 | 68 | ralrimiva |  |-  ( ph -> A. x e. ( Clsd ` J ) ( `' G " x ) e. ( Clsd ` K ) ) | 
						
							| 70 |  | iscncl |  |-  ( ( K e. ( TopOn ` B ) /\ J e. ( TopOn ` A ) ) -> ( G e. ( K Cn J ) <-> ( G : B --> A /\ A. x e. ( Clsd ` J ) ( `' G " x ) e. ( Clsd ` K ) ) ) ) | 
						
							| 71 | 70 | biimpar |  |-  ( ( ( K e. ( TopOn ` B ) /\ J e. ( TopOn ` A ) ) /\ ( G : B --> A /\ A. x e. ( Clsd ` J ) ( `' G " x ) e. ( Clsd ` K ) ) ) -> G e. ( K Cn J ) ) | 
						
							| 72 | 13 15 22 69 71 | syl22anc |  |-  ( ph -> G e. ( K Cn J ) ) |