Metamath Proof Explorer


Theorem rhmpreimacn

Description: The function mapping a prime ideal to its preimage by a surjective ring homomorphism is continuous, when considering the Zariski topology. Corollary 1.2.3 of EGA, p. 83. Notice that the direction of the continuous map G is reverse: the original ring homomorphism F goes from R to S , but the continuous map G goes from B to A . This mapping is also called "induced map on prime spectra" or "pullback on primes". (Contributed by Thierry Arnoux, 8-Jul-2024)

Ref Expression
Hypotheses rhmpreimacn.t
|- T = ( Spec ` R )
rhmpreimacn.u
|- U = ( Spec ` S )
rhmpreimacn.a
|- A = ( PrmIdeal ` R )
rhmpreimacn.b
|- B = ( PrmIdeal ` S )
rhmpreimacn.j
|- J = ( TopOpen ` T )
rhmpreimacn.k
|- K = ( TopOpen ` U )
rhmpreimacn.g
|- G = ( i e. B |-> ( `' F " i ) )
rhmpreimacn.r
|- ( ph -> R e. CRing )
rhmpreimacn.s
|- ( ph -> S e. CRing )
rhmpreimacn.f
|- ( ph -> F e. ( R RingHom S ) )
rhmpreimacn.1
|- ( ph -> ran F = ( Base ` S ) )
Assertion rhmpreimacn
|- ( ph -> G e. ( K Cn J ) )

Proof

Step Hyp Ref Expression
1 rhmpreimacn.t
 |-  T = ( Spec ` R )
2 rhmpreimacn.u
 |-  U = ( Spec ` S )
3 rhmpreimacn.a
 |-  A = ( PrmIdeal ` R )
4 rhmpreimacn.b
 |-  B = ( PrmIdeal ` S )
5 rhmpreimacn.j
 |-  J = ( TopOpen ` T )
6 rhmpreimacn.k
 |-  K = ( TopOpen ` U )
7 rhmpreimacn.g
 |-  G = ( i e. B |-> ( `' F " i ) )
8 rhmpreimacn.r
 |-  ( ph -> R e. CRing )
9 rhmpreimacn.s
 |-  ( ph -> S e. CRing )
10 rhmpreimacn.f
 |-  ( ph -> F e. ( R RingHom S ) )
11 rhmpreimacn.1
 |-  ( ph -> ran F = ( Base ` S ) )
12 2 6 4 zartopon
 |-  ( S e. CRing -> K e. ( TopOn ` B ) )
13 9 12 syl
 |-  ( ph -> K e. ( TopOn ` B ) )
14 1 5 3 zartopon
 |-  ( R e. CRing -> J e. ( TopOn ` A ) )
15 8 14 syl
 |-  ( ph -> J e. ( TopOn ` A ) )
16 9 adantr
 |-  ( ( ph /\ i e. B ) -> S e. CRing )
17 10 adantr
 |-  ( ( ph /\ i e. B ) -> F e. ( R RingHom S ) )
18 simpr
 |-  ( ( ph /\ i e. B ) -> i e. B )
19 18 4 eleqtrdi
 |-  ( ( ph /\ i e. B ) -> i e. ( PrmIdeal ` S ) )
20 3 rhmpreimaprmidl
 |-  ( ( ( S e. CRing /\ F e. ( R RingHom S ) ) /\ i e. ( PrmIdeal ` S ) ) -> ( `' F " i ) e. A )
21 16 17 19 20 syl21anc
 |-  ( ( ph /\ i e. B ) -> ( `' F " i ) e. A )
22 21 7 fmptd
 |-  ( ph -> G : B --> A )
23 4 fvexi
 |-  B e. _V
24 23 rabex
 |-  { k e. B | j C_ k } e. _V
25 sseq1
 |-  ( l = j -> ( l C_ k <-> j C_ k ) )
26 25 rabbidv
 |-  ( l = j -> { k e. B | l C_ k } = { k e. B | j C_ k } )
27 26 cbvmptv
 |-  ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( j e. ( LIdeal ` S ) |-> { k e. B | j C_ k } )
28 24 27 fnmpti
 |-  ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) Fn ( LIdeal ` S )
29 10 ad3antrrr
 |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> F e. ( R RingHom S ) )
30 11 ad3antrrr
 |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ran F = ( Base ` S ) )
31 simplr
 |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> a e. ( LIdeal ` R ) )
32 eqid
 |-  ( Base ` S ) = ( Base ` S )
33 eqid
 |-  ( LIdeal ` R ) = ( LIdeal ` R )
34 eqid
 |-  ( LIdeal ` S ) = ( LIdeal ` S )
35 32 33 34 rhmimaidl
 |-  ( ( F e. ( R RingHom S ) /\ ran F = ( Base ` S ) /\ a e. ( LIdeal ` R ) ) -> ( F " a ) e. ( LIdeal ` S ) )
36 29 30 31 35 syl3anc
 |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( F " a ) e. ( LIdeal ` S ) )
37 fveqeq2
 |-  ( b = ( F " a ) -> ( ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) <-> ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` ( F " a ) ) = ( `' G " x ) ) )
38 37 adantl
 |-  ( ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) /\ b = ( F " a ) ) -> ( ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) <-> ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` ( F " a ) ) = ( `' G " x ) ) )
39 8 ad3antrrr
 |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> R e. CRing )
40 9 ad3antrrr
 |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> S e. CRing )
41 25 rabbidv
 |-  ( l = j -> { k e. A | l C_ k } = { k e. A | j C_ k } )
42 41 cbvmptv
 |-  ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) = ( j e. ( LIdeal ` R ) |-> { k e. A | j C_ k } )
43 1 2 3 4 5 6 7 39 40 29 30 31 42 27 rhmpreimacnlem
 |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` ( F " a ) ) = ( `' G " ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) ) )
44 simpr
 |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x )
45 44 imaeq2d
 |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( `' G " ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) ) = ( `' G " x ) )
46 43 45 eqtrd
 |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` ( F " a ) ) = ( `' G " x ) )
47 36 38 46 rspcedvd
 |-  ( ( ( ( ph /\ x e. ( Clsd ` J ) ) /\ a e. ( LIdeal ` R ) ) /\ ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) -> E. b e. ( LIdeal ` S ) ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) )
48 3 fvexi
 |-  A e. _V
49 48 rabex
 |-  { k e. A | j C_ k } e. _V
50 49 42 fnmpti
 |-  ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) Fn ( LIdeal ` R )
51 simpr
 |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> x e. ( Clsd ` J ) )
52 8 adantr
 |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> R e. CRing )
53 1 5 3 42 zartopn
 |-  ( R e. CRing -> ( J e. ( TopOn ` A ) /\ ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) = ( Clsd ` J ) ) )
54 53 simprd
 |-  ( R e. CRing -> ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) = ( Clsd ` J ) )
55 52 54 syl
 |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) = ( Clsd ` J ) )
56 51 55 eleqtrrd
 |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> x e. ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) )
57 fvelrnb
 |-  ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) Fn ( LIdeal ` R ) -> ( x e. ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) <-> E. a e. ( LIdeal ` R ) ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x ) )
58 57 biimpa
 |-  ( ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) Fn ( LIdeal ` R ) /\ x e. ran ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ) -> E. a e. ( LIdeal ` R ) ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x )
59 50 56 58 sylancr
 |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> E. a e. ( LIdeal ` R ) ( ( l e. ( LIdeal ` R ) |-> { k e. A | l C_ k } ) ` a ) = x )
60 47 59 r19.29a
 |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> E. b e. ( LIdeal ` S ) ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) )
61 fvelrnb
 |-  ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) Fn ( LIdeal ` S ) -> ( ( `' G " x ) e. ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) <-> E. b e. ( LIdeal ` S ) ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) ) )
62 61 biimpar
 |-  ( ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) Fn ( LIdeal ` S ) /\ E. b e. ( LIdeal ` S ) ( ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) ` b ) = ( `' G " x ) ) -> ( `' G " x ) e. ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) )
63 28 60 62 sylancr
 |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> ( `' G " x ) e. ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) )
64 2 6 4 27 zartopn
 |-  ( S e. CRing -> ( K e. ( TopOn ` B ) /\ ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( Clsd ` K ) ) )
65 64 simprd
 |-  ( S e. CRing -> ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( Clsd ` K ) )
66 9 65 syl
 |-  ( ph -> ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( Clsd ` K ) )
67 66 adantr
 |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> ran ( l e. ( LIdeal ` S ) |-> { k e. B | l C_ k } ) = ( Clsd ` K ) )
68 63 67 eleqtrd
 |-  ( ( ph /\ x e. ( Clsd ` J ) ) -> ( `' G " x ) e. ( Clsd ` K ) )
69 68 ralrimiva
 |-  ( ph -> A. x e. ( Clsd ` J ) ( `' G " x ) e. ( Clsd ` K ) )
70 iscncl
 |-  ( ( K e. ( TopOn ` B ) /\ J e. ( TopOn ` A ) ) -> ( G e. ( K Cn J ) <-> ( G : B --> A /\ A. x e. ( Clsd ` J ) ( `' G " x ) e. ( Clsd ` K ) ) ) )
71 70 biimpar
 |-  ( ( ( K e. ( TopOn ` B ) /\ J e. ( TopOn ` A ) ) /\ ( G : B --> A /\ A. x e. ( Clsd ` J ) ( `' G " x ) e. ( Clsd ` K ) ) ) -> G e. ( K Cn J ) )
72 13 15 22 69 71 syl22anc
 |-  ( ph -> G e. ( K Cn J ) )