| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rhmpreimacn.t | ⊢ 𝑇  =  ( Spec ‘ 𝑅 ) | 
						
							| 2 |  | rhmpreimacn.u | ⊢ 𝑈  =  ( Spec ‘ 𝑆 ) | 
						
							| 3 |  | rhmpreimacn.a | ⊢ 𝐴  =  ( PrmIdeal ‘ 𝑅 ) | 
						
							| 4 |  | rhmpreimacn.b | ⊢ 𝐵  =  ( PrmIdeal ‘ 𝑆 ) | 
						
							| 5 |  | rhmpreimacn.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑇 ) | 
						
							| 6 |  | rhmpreimacn.k | ⊢ 𝐾  =  ( TopOpen ‘ 𝑈 ) | 
						
							| 7 |  | rhmpreimacn.g | ⊢ 𝐺  =  ( 𝑖  ∈  𝐵  ↦  ( ◡ 𝐹  “  𝑖 ) ) | 
						
							| 8 |  | rhmpreimacn.r | ⊢ ( 𝜑  →  𝑅  ∈  CRing ) | 
						
							| 9 |  | rhmpreimacn.s | ⊢ ( 𝜑  →  𝑆  ∈  CRing ) | 
						
							| 10 |  | rhmpreimacn.f | ⊢ ( 𝜑  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 11 |  | rhmpreimacn.1 | ⊢ ( 𝜑  →  ran  𝐹  =  ( Base ‘ 𝑆 ) ) | 
						
							| 12 | 2 6 4 | zartopon | ⊢ ( 𝑆  ∈  CRing  →  𝐾  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 13 | 9 12 | syl | ⊢ ( 𝜑  →  𝐾  ∈  ( TopOn ‘ 𝐵 ) ) | 
						
							| 14 | 1 5 3 | zartopon | ⊢ ( 𝑅  ∈  CRing  →  𝐽  ∈  ( TopOn ‘ 𝐴 ) ) | 
						
							| 15 | 8 14 | syl | ⊢ ( 𝜑  →  𝐽  ∈  ( TopOn ‘ 𝐴 ) ) | 
						
							| 16 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐵 )  →  𝑆  ∈  CRing ) | 
						
							| 17 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐵 )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 18 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐵 )  →  𝑖  ∈  𝐵 ) | 
						
							| 19 | 18 4 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐵 )  →  𝑖  ∈  ( PrmIdeal ‘ 𝑆 ) ) | 
						
							| 20 | 3 | rhmpreimaprmidl | ⊢ ( ( ( 𝑆  ∈  CRing  ∧  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) )  ∧  𝑖  ∈  ( PrmIdeal ‘ 𝑆 ) )  →  ( ◡ 𝐹  “  𝑖 )  ∈  𝐴 ) | 
						
							| 21 | 16 17 19 20 | syl21anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝐵 )  →  ( ◡ 𝐹  “  𝑖 )  ∈  𝐴 ) | 
						
							| 22 | 21 7 | fmptd | ⊢ ( 𝜑  →  𝐺 : 𝐵 ⟶ 𝐴 ) | 
						
							| 23 | 4 | fvexi | ⊢ 𝐵  ∈  V | 
						
							| 24 | 23 | rabex | ⊢ { 𝑘  ∈  𝐵  ∣  𝑗  ⊆  𝑘 }  ∈  V | 
						
							| 25 |  | sseq1 | ⊢ ( 𝑙  =  𝑗  →  ( 𝑙  ⊆  𝑘  ↔  𝑗  ⊆  𝑘 ) ) | 
						
							| 26 | 25 | rabbidv | ⊢ ( 𝑙  =  𝑗  →  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 }  =  { 𝑘  ∈  𝐵  ∣  𝑗  ⊆  𝑘 } ) | 
						
							| 27 | 26 | cbvmptv | ⊢ ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } )  =  ( 𝑗  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑗  ⊆  𝑘 } ) | 
						
							| 28 | 24 27 | fnmpti | ⊢ ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } )  Fn  ( LIdeal ‘ 𝑆 ) | 
						
							| 29 | 10 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 )  →  𝐹  ∈  ( 𝑅  RingHom  𝑆 ) ) | 
						
							| 30 | 11 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 )  →  ran  𝐹  =  ( Base ‘ 𝑆 ) ) | 
						
							| 31 |  | simplr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 )  →  𝑎  ∈  ( LIdeal ‘ 𝑅 ) ) | 
						
							| 32 |  | eqid | ⊢ ( Base ‘ 𝑆 )  =  ( Base ‘ 𝑆 ) | 
						
							| 33 |  | eqid | ⊢ ( LIdeal ‘ 𝑅 )  =  ( LIdeal ‘ 𝑅 ) | 
						
							| 34 |  | eqid | ⊢ ( LIdeal ‘ 𝑆 )  =  ( LIdeal ‘ 𝑆 ) | 
						
							| 35 | 32 33 34 | rhmimaidl | ⊢ ( ( 𝐹  ∈  ( 𝑅  RingHom  𝑆 )  ∧  ran  𝐹  =  ( Base ‘ 𝑆 )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  →  ( 𝐹  “  𝑎 )  ∈  ( LIdeal ‘ 𝑆 ) ) | 
						
							| 36 | 29 30 31 35 | syl3anc | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 )  →  ( 𝐹  “  𝑎 )  ∈  ( LIdeal ‘ 𝑆 ) ) | 
						
							| 37 |  | fveqeq2 | ⊢ ( 𝑏  =  ( 𝐹  “  𝑎 )  →  ( ( ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑏 )  =  ( ◡ 𝐺  “  𝑥 )  ↔  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } ) ‘ ( 𝐹  “  𝑎 ) )  =  ( ◡ 𝐺  “  𝑥 ) ) ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 )  ∧  𝑏  =  ( 𝐹  “  𝑎 ) )  →  ( ( ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑏 )  =  ( ◡ 𝐺  “  𝑥 )  ↔  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } ) ‘ ( 𝐹  “  𝑎 ) )  =  ( ◡ 𝐺  “  𝑥 ) ) ) | 
						
							| 39 | 8 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 )  →  𝑅  ∈  CRing ) | 
						
							| 40 | 9 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 )  →  𝑆  ∈  CRing ) | 
						
							| 41 | 25 | rabbidv | ⊢ ( 𝑙  =  𝑗  →  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 }  =  { 𝑘  ∈  𝐴  ∣  𝑗  ⊆  𝑘 } ) | 
						
							| 42 | 41 | cbvmptv | ⊢ ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } )  =  ( 𝑗  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑗  ⊆  𝑘 } ) | 
						
							| 43 | 1 2 3 4 5 6 7 39 40 29 30 31 42 27 | rhmpreimacnlem | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 )  →  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } ) ‘ ( 𝐹  “  𝑎 ) )  =  ( ◡ 𝐺  “  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 ) ) ) | 
						
							| 44 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 )  →  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 ) | 
						
							| 45 | 44 | imaeq2d | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 )  →  ( ◡ 𝐺  “  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 ) )  =  ( ◡ 𝐺  “  𝑥 ) ) | 
						
							| 46 | 43 45 | eqtrd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 )  →  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } ) ‘ ( 𝐹  “  𝑎 ) )  =  ( ◡ 𝐺  “  𝑥 ) ) | 
						
							| 47 | 36 38 46 | rspcedvd | ⊢ ( ( ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  ∧  𝑎  ∈  ( LIdeal ‘ 𝑅 ) )  ∧  ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 )  →  ∃ 𝑏  ∈  ( LIdeal ‘ 𝑆 ) ( ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑏 )  =  ( ◡ 𝐺  “  𝑥 ) ) | 
						
							| 48 | 3 | fvexi | ⊢ 𝐴  ∈  V | 
						
							| 49 | 48 | rabex | ⊢ { 𝑘  ∈  𝐴  ∣  𝑗  ⊆  𝑘 }  ∈  V | 
						
							| 50 | 49 42 | fnmpti | ⊢ ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } )  Fn  ( LIdeal ‘ 𝑅 ) | 
						
							| 51 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑥  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 52 | 8 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑅  ∈  CRing ) | 
						
							| 53 | 1 5 3 42 | zartopn | ⊢ ( 𝑅  ∈  CRing  →  ( 𝐽  ∈  ( TopOn ‘ 𝐴 )  ∧  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } )  =  ( Clsd ‘ 𝐽 ) ) ) | 
						
							| 54 | 53 | simprd | ⊢ ( 𝑅  ∈  CRing  →  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } )  =  ( Clsd ‘ 𝐽 ) ) | 
						
							| 55 | 52 54 | syl | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  →  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } )  =  ( Clsd ‘ 𝐽 ) ) | 
						
							| 56 | 51 55 | eleqtrrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  →  𝑥  ∈  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ) | 
						
							| 57 |  | fvelrnb | ⊢ ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } )  Fn  ( LIdeal ‘ 𝑅 )  →  ( 𝑥  ∈  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } )  ↔  ∃ 𝑎  ∈  ( LIdeal ‘ 𝑅 ) ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 ) ) | 
						
							| 58 | 57 | biimpa | ⊢ ( ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } )  Fn  ( LIdeal ‘ 𝑅 )  ∧  𝑥  ∈  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) )  →  ∃ 𝑎  ∈  ( LIdeal ‘ 𝑅 ) ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 ) | 
						
							| 59 | 50 56 58 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  →  ∃ 𝑎  ∈  ( LIdeal ‘ 𝑅 ) ( ( 𝑙  ∈  ( LIdeal ‘ 𝑅 )  ↦  { 𝑘  ∈  𝐴  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑎 )  =  𝑥 ) | 
						
							| 60 | 47 59 | r19.29a | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  →  ∃ 𝑏  ∈  ( LIdeal ‘ 𝑆 ) ( ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑏 )  =  ( ◡ 𝐺  “  𝑥 ) ) | 
						
							| 61 |  | fvelrnb | ⊢ ( ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } )  Fn  ( LIdeal ‘ 𝑆 )  →  ( ( ◡ 𝐺  “  𝑥 )  ∈  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } )  ↔  ∃ 𝑏  ∈  ( LIdeal ‘ 𝑆 ) ( ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑏 )  =  ( ◡ 𝐺  “  𝑥 ) ) ) | 
						
							| 62 | 61 | biimpar | ⊢ ( ( ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } )  Fn  ( LIdeal ‘ 𝑆 )  ∧  ∃ 𝑏  ∈  ( LIdeal ‘ 𝑆 ) ( ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } ) ‘ 𝑏 )  =  ( ◡ 𝐺  “  𝑥 ) )  →  ( ◡ 𝐺  “  𝑥 )  ∈  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } ) ) | 
						
							| 63 | 28 60 62 | sylancr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ◡ 𝐺  “  𝑥 )  ∈  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } ) ) | 
						
							| 64 | 2 6 4 27 | zartopn | ⊢ ( 𝑆  ∈  CRing  →  ( 𝐾  ∈  ( TopOn ‘ 𝐵 )  ∧  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } )  =  ( Clsd ‘ 𝐾 ) ) ) | 
						
							| 65 | 64 | simprd | ⊢ ( 𝑆  ∈  CRing  →  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } )  =  ( Clsd ‘ 𝐾 ) ) | 
						
							| 66 | 9 65 | syl | ⊢ ( 𝜑  →  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } )  =  ( Clsd ‘ 𝐾 ) ) | 
						
							| 67 | 66 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  →  ran  ( 𝑙  ∈  ( LIdeal ‘ 𝑆 )  ↦  { 𝑘  ∈  𝐵  ∣  𝑙  ⊆  𝑘 } )  =  ( Clsd ‘ 𝐾 ) ) | 
						
							| 68 | 63 67 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  ( Clsd ‘ 𝐽 ) )  →  ( ◡ 𝐺  “  𝑥 )  ∈  ( Clsd ‘ 𝐾 ) ) | 
						
							| 69 | 68 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  ( Clsd ‘ 𝐽 ) ( ◡ 𝐺  “  𝑥 )  ∈  ( Clsd ‘ 𝐾 ) ) | 
						
							| 70 |  | iscncl | ⊢ ( ( 𝐾  ∈  ( TopOn ‘ 𝐵 )  ∧  𝐽  ∈  ( TopOn ‘ 𝐴 ) )  →  ( 𝐺  ∈  ( 𝐾  Cn  𝐽 )  ↔  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  ∀ 𝑥  ∈  ( Clsd ‘ 𝐽 ) ( ◡ 𝐺  “  𝑥 )  ∈  ( Clsd ‘ 𝐾 ) ) ) ) | 
						
							| 71 | 70 | biimpar | ⊢ ( ( ( 𝐾  ∈  ( TopOn ‘ 𝐵 )  ∧  𝐽  ∈  ( TopOn ‘ 𝐴 ) )  ∧  ( 𝐺 : 𝐵 ⟶ 𝐴  ∧  ∀ 𝑥  ∈  ( Clsd ‘ 𝐽 ) ( ◡ 𝐺  “  𝑥 )  ∈  ( Clsd ‘ 𝐾 ) ) )  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) | 
						
							| 72 | 13 15 22 69 71 | syl22anc | ⊢ ( 𝜑  →  𝐺  ∈  ( 𝐾  Cn  𝐽 ) ) |