Step |
Hyp |
Ref |
Expression |
1 |
|
rhmpreimacn.t |
⊢ 𝑇 = ( Spec ‘ 𝑅 ) |
2 |
|
rhmpreimacn.u |
⊢ 𝑈 = ( Spec ‘ 𝑆 ) |
3 |
|
rhmpreimacn.a |
⊢ 𝐴 = ( PrmIdeal ‘ 𝑅 ) |
4 |
|
rhmpreimacn.b |
⊢ 𝐵 = ( PrmIdeal ‘ 𝑆 ) |
5 |
|
rhmpreimacn.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑇 ) |
6 |
|
rhmpreimacn.k |
⊢ 𝐾 = ( TopOpen ‘ 𝑈 ) |
7 |
|
rhmpreimacn.g |
⊢ 𝐺 = ( 𝑖 ∈ 𝐵 ↦ ( ◡ 𝐹 “ 𝑖 ) ) |
8 |
|
rhmpreimacn.r |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
9 |
|
rhmpreimacn.s |
⊢ ( 𝜑 → 𝑆 ∈ CRing ) |
10 |
|
rhmpreimacn.f |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
11 |
|
rhmpreimacn.1 |
⊢ ( 𝜑 → ran 𝐹 = ( Base ‘ 𝑆 ) ) |
12 |
2 6 4
|
zartopon |
⊢ ( 𝑆 ∈ CRing → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
13 |
9 12
|
syl |
⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝐵 ) ) |
14 |
1 5 3
|
zartopon |
⊢ ( 𝑅 ∈ CRing → 𝐽 ∈ ( TopOn ‘ 𝐴 ) ) |
15 |
8 14
|
syl |
⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝐴 ) ) |
16 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ) → 𝑆 ∈ CRing ) |
17 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ) → 𝑖 ∈ 𝐵 ) |
19 |
18 4
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ) → 𝑖 ∈ ( PrmIdeal ‘ 𝑆 ) ) |
20 |
3
|
rhmpreimaprmidl |
⊢ ( ( ( 𝑆 ∈ CRing ∧ 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) ∧ 𝑖 ∈ ( PrmIdeal ‘ 𝑆 ) ) → ( ◡ 𝐹 “ 𝑖 ) ∈ 𝐴 ) |
21 |
16 17 19 20
|
syl21anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝐵 ) → ( ◡ 𝐹 “ 𝑖 ) ∈ 𝐴 ) |
22 |
21 7
|
fmptd |
⊢ ( 𝜑 → 𝐺 : 𝐵 ⟶ 𝐴 ) |
23 |
4
|
fvexi |
⊢ 𝐵 ∈ V |
24 |
23
|
rabex |
⊢ { 𝑘 ∈ 𝐵 ∣ 𝑗 ⊆ 𝑘 } ∈ V |
25 |
|
sseq1 |
⊢ ( 𝑙 = 𝑗 → ( 𝑙 ⊆ 𝑘 ↔ 𝑗 ⊆ 𝑘 ) ) |
26 |
25
|
rabbidv |
⊢ ( 𝑙 = 𝑗 → { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } = { 𝑘 ∈ 𝐵 ∣ 𝑗 ⊆ 𝑘 } ) |
27 |
26
|
cbvmptv |
⊢ ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) = ( 𝑗 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑗 ⊆ 𝑘 } ) |
28 |
24 27
|
fnmpti |
⊢ ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) Fn ( LIdeal ‘ 𝑆 ) |
29 |
10
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) → 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ) |
30 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) → ran 𝐹 = ( Base ‘ 𝑆 ) ) |
31 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) → 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) |
32 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
33 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
34 |
|
eqid |
⊢ ( LIdeal ‘ 𝑆 ) = ( LIdeal ‘ 𝑆 ) |
35 |
32 33 34
|
rhmimaidl |
⊢ ( ( 𝐹 ∈ ( 𝑅 RingHom 𝑆 ) ∧ ran 𝐹 = ( Base ‘ 𝑆 ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝐹 “ 𝑎 ) ∈ ( LIdeal ‘ 𝑆 ) ) |
36 |
29 30 31 35
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) → ( 𝐹 “ 𝑎 ) ∈ ( LIdeal ‘ 𝑆 ) ) |
37 |
|
fveqeq2 |
⊢ ( 𝑏 = ( 𝐹 “ 𝑎 ) → ( ( ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑏 ) = ( ◡ 𝐺 “ 𝑥 ) ↔ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ‘ ( 𝐹 “ 𝑎 ) ) = ( ◡ 𝐺 “ 𝑥 ) ) ) |
38 |
37
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) ∧ 𝑏 = ( 𝐹 “ 𝑎 ) ) → ( ( ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑏 ) = ( ◡ 𝐺 “ 𝑥 ) ↔ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ‘ ( 𝐹 “ 𝑎 ) ) = ( ◡ 𝐺 “ 𝑥 ) ) ) |
39 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) → 𝑅 ∈ CRing ) |
40 |
9
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) → 𝑆 ∈ CRing ) |
41 |
25
|
rabbidv |
⊢ ( 𝑙 = 𝑗 → { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } = { 𝑘 ∈ 𝐴 ∣ 𝑗 ⊆ 𝑘 } ) |
42 |
41
|
cbvmptv |
⊢ ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) = ( 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑗 ⊆ 𝑘 } ) |
43 |
1 2 3 4 5 6 7 39 40 29 30 31 42 27
|
rhmpreimacnlem |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) → ( ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ‘ ( 𝐹 “ 𝑎 ) ) = ( ◡ 𝐺 “ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) ) ) |
44 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) → ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) |
45 |
44
|
imaeq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) → ( ◡ 𝐺 “ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) ) = ( ◡ 𝐺 “ 𝑥 ) ) |
46 |
43 45
|
eqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) → ( ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ‘ ( 𝐹 “ 𝑎 ) ) = ( ◡ 𝐺 “ 𝑥 ) ) |
47 |
36 38 46
|
rspcedvd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) ∧ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) → ∃ 𝑏 ∈ ( LIdeal ‘ 𝑆 ) ( ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑏 ) = ( ◡ 𝐺 “ 𝑥 ) ) |
48 |
3
|
fvexi |
⊢ 𝐴 ∈ V |
49 |
48
|
rabex |
⊢ { 𝑘 ∈ 𝐴 ∣ 𝑗 ⊆ 𝑘 } ∈ V |
50 |
49 42
|
fnmpti |
⊢ ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) Fn ( LIdeal ‘ 𝑅 ) |
51 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) |
52 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑅 ∈ CRing ) |
53 |
1 5 3 42
|
zartopn |
⊢ ( 𝑅 ∈ CRing → ( 𝐽 ∈ ( TopOn ‘ 𝐴 ) ∧ ran ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) = ( Clsd ‘ 𝐽 ) ) ) |
54 |
53
|
simprd |
⊢ ( 𝑅 ∈ CRing → ran ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) = ( Clsd ‘ 𝐽 ) ) |
55 |
52 54
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ran ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) = ( Clsd ‘ 𝐽 ) ) |
56 |
51 55
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → 𝑥 ∈ ran ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ) |
57 |
|
fvelrnb |
⊢ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) Fn ( LIdeal ‘ 𝑅 ) → ( 𝑥 ∈ ran ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ↔ ∃ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) ) |
58 |
57
|
biimpa |
⊢ ( ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) Fn ( LIdeal ‘ 𝑅 ) ∧ 𝑥 ∈ ran ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ) → ∃ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) |
59 |
50 56 58
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ∃ 𝑎 ∈ ( LIdeal ‘ 𝑅 ) ( ( 𝑙 ∈ ( LIdeal ‘ 𝑅 ) ↦ { 𝑘 ∈ 𝐴 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑎 ) = 𝑥 ) |
60 |
47 59
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ∃ 𝑏 ∈ ( LIdeal ‘ 𝑆 ) ( ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑏 ) = ( ◡ 𝐺 “ 𝑥 ) ) |
61 |
|
fvelrnb |
⊢ ( ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) Fn ( LIdeal ‘ 𝑆 ) → ( ( ◡ 𝐺 “ 𝑥 ) ∈ ran ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ↔ ∃ 𝑏 ∈ ( LIdeal ‘ 𝑆 ) ( ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑏 ) = ( ◡ 𝐺 “ 𝑥 ) ) ) |
62 |
61
|
biimpar |
⊢ ( ( ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) Fn ( LIdeal ‘ 𝑆 ) ∧ ∃ 𝑏 ∈ ( LIdeal ‘ 𝑆 ) ( ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ‘ 𝑏 ) = ( ◡ 𝐺 “ 𝑥 ) ) → ( ◡ 𝐺 “ 𝑥 ) ∈ ran ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ) |
63 |
28 60 62
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ 𝐺 “ 𝑥 ) ∈ ran ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) ) |
64 |
2 6 4 27
|
zartopn |
⊢ ( 𝑆 ∈ CRing → ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ ran ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) = ( Clsd ‘ 𝐾 ) ) ) |
65 |
64
|
simprd |
⊢ ( 𝑆 ∈ CRing → ran ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) = ( Clsd ‘ 𝐾 ) ) |
66 |
9 65
|
syl |
⊢ ( 𝜑 → ran ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) = ( Clsd ‘ 𝐾 ) ) |
67 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ran ( 𝑙 ∈ ( LIdeal ‘ 𝑆 ) ↦ { 𝑘 ∈ 𝐵 ∣ 𝑙 ⊆ 𝑘 } ) = ( Clsd ‘ 𝐾 ) ) |
68 |
63 67
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ) → ( ◡ 𝐺 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) |
69 |
68
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ◡ 𝐺 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) |
70 |
|
iscncl |
⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝐴 ) ) → ( 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ↔ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ◡ 𝐺 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) ) ) |
71 |
70
|
biimpar |
⊢ ( ( ( 𝐾 ∈ ( TopOn ‘ 𝐵 ) ∧ 𝐽 ∈ ( TopOn ‘ 𝐴 ) ) ∧ ( 𝐺 : 𝐵 ⟶ 𝐴 ∧ ∀ 𝑥 ∈ ( Clsd ‘ 𝐽 ) ( ◡ 𝐺 “ 𝑥 ) ∈ ( Clsd ‘ 𝐾 ) ) ) → 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) |
72 |
13 15 22 69 71
|
syl22anc |
⊢ ( 𝜑 → 𝐺 ∈ ( 𝐾 Cn 𝐽 ) ) |