Metamath Proof Explorer


Theorem rspidlid

Description: The ideal span of an ideal is the ideal itself. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses rspidlid.1 K=RSpanR
rspidlid.2 U=LIdealR
Assertion rspidlid RRingIUKI=I

Proof

Step Hyp Ref Expression
1 rspidlid.1 K=RSpanR
2 rspidlid.2 U=LIdealR
3 ssid II
4 1 2 rspssp RRingIUIIKII
5 3 4 mp3an3 RRingIUKII
6 eqid BaseR=BaseR
7 6 2 lidlss IUIBaseR
8 1 6 rspssid RRingIBaseRIKI
9 7 8 sylan2 RRingIUIKI
10 5 9 eqssd RRingIUKI=I