Metamath Proof Explorer


Theorem rspidlid

Description: The ideal span of an ideal is the ideal itself. (Contributed by Thierry Arnoux, 1-Jun-2024)

Ref Expression
Hypotheses rspidlid.1 K = RSpan R
rspidlid.2 U = LIdeal R
Assertion rspidlid R Ring I U K I = I

Proof

Step Hyp Ref Expression
1 rspidlid.1 K = RSpan R
2 rspidlid.2 U = LIdeal R
3 ssid I I
4 1 2 rspssp R Ring I U I I K I I
5 3 4 mp3an3 R Ring I U K I I
6 eqid Base R = Base R
7 6 2 lidlss I U I Base R
8 1 6 rspssid R Ring I Base R I K I
9 7 8 sylan2 R Ring I U I K I
10 5 9 eqssd R Ring I U K I = I