| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfcgra2.p |  | 
						
							| 2 |  | dfcgra2.i |  | 
						
							| 3 |  | dfcgra2.m |  | 
						
							| 4 |  | dfcgra2.g |  | 
						
							| 5 |  | dfcgra2.a |  | 
						
							| 6 |  | dfcgra2.b |  | 
						
							| 7 |  | dfcgra2.c |  | 
						
							| 8 |  | dfcgra2.d |  | 
						
							| 9 |  | dfcgra2.e |  | 
						
							| 10 |  | dfcgra2.f |  | 
						
							| 11 |  | sacgr.x |  | 
						
							| 12 |  | sacgr.y |  | 
						
							| 13 |  | sacgr.1 |  | 
						
							| 14 |  | sacgr.2 |  | 
						
							| 15 |  | sacgr.3 |  | 
						
							| 16 |  | sacgr.4 |  | 
						
							| 17 |  | sacgr.5 |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 4 | ad3antrrr |  | 
						
							| 20 | 11 | ad3antrrr |  | 
						
							| 21 | 6 | ad3antrrr |  | 
						
							| 22 | 7 | ad3antrrr |  | 
						
							| 23 | 12 | ad3antrrr |  | 
						
							| 24 | 9 | ad3antrrr |  | 
						
							| 25 | 10 | ad3antrrr |  | 
						
							| 26 |  | eqid |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 |  | eqid |  | 
						
							| 29 |  | simpllr |  | 
						
							| 30 | 1 3 2 26 27 19 24 28 29 | mircl |  | 
						
							| 31 |  | simplr |  | 
						
							| 32 |  | eqid |  | 
						
							| 33 | 1 3 2 26 27 4 6 32 11 | mirmir |  | 
						
							| 34 |  | eqidd |  | 
						
							| 35 |  | eqidd |  | 
						
							| 36 | 33 34 35 | s3eqd |  | 
						
							| 37 | 36 | ad3antrrr |  | 
						
							| 38 |  | eqid |  | 
						
							| 39 | 1 3 2 26 27 4 6 32 11 | mircl |  | 
						
							| 40 | 39 | ad3antrrr |  | 
						
							| 41 | 16 | necomd |  | 
						
							| 42 | 1 3 2 26 27 4 6 32 11 41 | mirne |  | 
						
							| 43 | 42 | ad3antrrr |  | 
						
							| 44 |  | simpr1 |  | 
						
							| 45 | 1 3 2 26 27 19 38 32 28 40 21 29 24 22 31 43 44 | mirtrcgr |  | 
						
							| 46 | 37 45 | eqbrtrrd |  | 
						
							| 47 | 17 | ad3antrrr |  | 
						
							| 48 | 47 | necomd |  | 
						
							| 49 | 8 | ad3antrrr |  | 
						
							| 50 |  | simpr2 |  | 
						
							| 51 | 1 2 18 29 49 24 19 50 | hlne1 |  | 
						
							| 52 | 1 3 2 26 27 19 24 28 29 51 | mirne |  | 
						
							| 53 | 1 2 18 29 49 24 19 50 | hlcomd |  | 
						
							| 54 | 15 | ad3antrrr |  | 
						
							| 55 | 1 2 18 49 29 23 19 24 53 54 | btwnhl |  | 
						
							| 56 | 1 3 2 19 29 24 23 55 | tgbtwncom |  | 
						
							| 57 | 1 3 2 26 27 19 24 28 29 | mirmir |  | 
						
							| 58 | 57 | oveq2d |  | 
						
							| 59 | 56 58 | eleqtrrd |  | 
						
							| 60 | 1 3 2 26 27 19 28 18 24 23 30 24 48 52 59 | mirhl2 |  | 
						
							| 61 | 1 2 18 23 30 24 19 60 | hlcomd |  | 
						
							| 62 |  | simpr3 |  | 
						
							| 63 | 1 2 18 19 20 21 22 23 24 25 30 31 46 61 62 | iscgrad |  | 
						
							| 64 | 1 2 18 4 5 6 7 8 9 10 13 | cgrane2 |  | 
						
							| 65 | 1 2 4 18 39 6 7 42 64 | cgraid |  | 
						
							| 66 | 1 2 18 4 5 6 7 8 9 10 13 | cgrane1 |  | 
						
							| 67 | 33 | oveq2d |  | 
						
							| 68 | 14 67 | eleqtrrd |  | 
						
							| 69 | 1 3 2 26 27 4 32 18 6 5 39 5 66 42 68 | mirhl2 |  | 
						
							| 70 | 1 2 18 4 39 6 7 39 6 7 65 5 69 | cgrahl1 |  | 
						
							| 71 | 1 2 4 18 39 6 7 5 6 7 70 8 9 10 13 | cgratr |  | 
						
							| 72 | 1 2 18 4 39 6 7 8 9 10 | iscgra |  | 
						
							| 73 | 71 72 | mpbid |  | 
						
							| 74 | 63 73 | r19.29vva |  |