| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfcgra2.p |
|- P = ( Base ` G ) |
| 2 |
|
dfcgra2.i |
|- I = ( Itv ` G ) |
| 3 |
|
dfcgra2.m |
|- .- = ( dist ` G ) |
| 4 |
|
dfcgra2.g |
|- ( ph -> G e. TarskiG ) |
| 5 |
|
dfcgra2.a |
|- ( ph -> A e. P ) |
| 6 |
|
dfcgra2.b |
|- ( ph -> B e. P ) |
| 7 |
|
dfcgra2.c |
|- ( ph -> C e. P ) |
| 8 |
|
dfcgra2.d |
|- ( ph -> D e. P ) |
| 9 |
|
dfcgra2.e |
|- ( ph -> E e. P ) |
| 10 |
|
dfcgra2.f |
|- ( ph -> F e. P ) |
| 11 |
|
sacgr.x |
|- ( ph -> X e. P ) |
| 12 |
|
sacgr.y |
|- ( ph -> Y e. P ) |
| 13 |
|
sacgr.1 |
|- ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) |
| 14 |
|
sacgr.2 |
|- ( ph -> B e. ( A I X ) ) |
| 15 |
|
sacgr.3 |
|- ( ph -> E e. ( D I Y ) ) |
| 16 |
|
sacgr.4 |
|- ( ph -> B =/= X ) |
| 17 |
|
sacgr.5 |
|- ( ph -> E =/= Y ) |
| 18 |
|
eqid |
|- ( hlG ` G ) = ( hlG ` G ) |
| 19 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> G e. TarskiG ) |
| 20 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> X e. P ) |
| 21 |
6
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> B e. P ) |
| 22 |
7
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> C e. P ) |
| 23 |
12
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> Y e. P ) |
| 24 |
9
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> E e. P ) |
| 25 |
10
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> F e. P ) |
| 26 |
|
eqid |
|- ( LineG ` G ) = ( LineG ` G ) |
| 27 |
|
eqid |
|- ( pInvG ` G ) = ( pInvG ` G ) |
| 28 |
|
eqid |
|- ( ( pInvG ` G ) ` E ) = ( ( pInvG ` G ) ` E ) |
| 29 |
|
simpllr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> x e. P ) |
| 30 |
1 3 2 26 27 19 24 28 29
|
mircl |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( ( ( pInvG ` G ) ` E ) ` x ) e. P ) |
| 31 |
|
simplr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> y e. P ) |
| 32 |
|
eqid |
|- ( ( pInvG ` G ) ` B ) = ( ( pInvG ` G ) ` B ) |
| 33 |
1 3 2 26 27 4 6 32 11
|
mirmir |
|- ( ph -> ( ( ( pInvG ` G ) ` B ) ` ( ( ( pInvG ` G ) ` B ) ` X ) ) = X ) |
| 34 |
|
eqidd |
|- ( ph -> B = B ) |
| 35 |
|
eqidd |
|- ( ph -> C = C ) |
| 36 |
33 34 35
|
s3eqd |
|- ( ph -> <" ( ( ( pInvG ` G ) ` B ) ` ( ( ( pInvG ` G ) ` B ) ` X ) ) B C "> = <" X B C "> ) |
| 37 |
36
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> <" ( ( ( pInvG ` G ) ` B ) ` ( ( ( pInvG ` G ) ` B ) ` X ) ) B C "> = <" X B C "> ) |
| 38 |
|
eqid |
|- ( cgrG ` G ) = ( cgrG ` G ) |
| 39 |
1 3 2 26 27 4 6 32 11
|
mircl |
|- ( ph -> ( ( ( pInvG ` G ) ` B ) ` X ) e. P ) |
| 40 |
39
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( ( ( pInvG ` G ) ` B ) ` X ) e. P ) |
| 41 |
16
|
necomd |
|- ( ph -> X =/= B ) |
| 42 |
1 3 2 26 27 4 6 32 11 41
|
mirne |
|- ( ph -> ( ( ( pInvG ` G ) ` B ) ` X ) =/= B ) |
| 43 |
42
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( ( ( pInvG ` G ) ` B ) ` X ) =/= B ) |
| 44 |
|
simpr1 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> ) |
| 45 |
1 3 2 26 27 19 38 32 28 40 21 29 24 22 31 43 44
|
mirtrcgr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> <" ( ( ( pInvG ` G ) ` B ) ` ( ( ( pInvG ` G ) ` B ) ` X ) ) B C "> ( cgrG ` G ) <" ( ( ( pInvG ` G ) ` E ) ` x ) E y "> ) |
| 46 |
37 45
|
eqbrtrrd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> <" X B C "> ( cgrG ` G ) <" ( ( ( pInvG ` G ) ` E ) ` x ) E y "> ) |
| 47 |
17
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> E =/= Y ) |
| 48 |
47
|
necomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> Y =/= E ) |
| 49 |
8
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> D e. P ) |
| 50 |
|
simpr2 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> x ( ( hlG ` G ) ` E ) D ) |
| 51 |
1 2 18 29 49 24 19 50
|
hlne1 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> x =/= E ) |
| 52 |
1 3 2 26 27 19 24 28 29 51
|
mirne |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( ( ( pInvG ` G ) ` E ) ` x ) =/= E ) |
| 53 |
1 2 18 29 49 24 19 50
|
hlcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> D ( ( hlG ` G ) ` E ) x ) |
| 54 |
15
|
ad3antrrr |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> E e. ( D I Y ) ) |
| 55 |
1 2 18 49 29 23 19 24 53 54
|
btwnhl |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> E e. ( x I Y ) ) |
| 56 |
1 3 2 19 29 24 23 55
|
tgbtwncom |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> E e. ( Y I x ) ) |
| 57 |
1 3 2 26 27 19 24 28 29
|
mirmir |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( ( ( pInvG ` G ) ` E ) ` ( ( ( pInvG ` G ) ` E ) ` x ) ) = x ) |
| 58 |
57
|
oveq2d |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( Y I ( ( ( pInvG ` G ) ` E ) ` ( ( ( pInvG ` G ) ` E ) ` x ) ) ) = ( Y I x ) ) |
| 59 |
56 58
|
eleqtrrd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> E e. ( Y I ( ( ( pInvG ` G ) ` E ) ` ( ( ( pInvG ` G ) ` E ) ` x ) ) ) ) |
| 60 |
1 3 2 26 27 19 28 18 24 23 30 24 48 52 59
|
mirhl2 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> Y ( ( hlG ` G ) ` E ) ( ( ( pInvG ` G ) ` E ) ` x ) ) |
| 61 |
1 2 18 23 30 24 19 60
|
hlcomd |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( ( ( pInvG ` G ) ` E ) ` x ) ( ( hlG ` G ) ` E ) Y ) |
| 62 |
|
simpr3 |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> y ( ( hlG ` G ) ` E ) F ) |
| 63 |
1 2 18 19 20 21 22 23 24 25 30 31 46 61 62
|
iscgrad |
|- ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> <" X B C "> ( cgrA ` G ) <" Y E F "> ) |
| 64 |
1 2 18 4 5 6 7 8 9 10 13
|
cgrane2 |
|- ( ph -> B =/= C ) |
| 65 |
1 2 4 18 39 6 7 42 64
|
cgraid |
|- ( ph -> <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrA ` G ) <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ) |
| 66 |
1 2 18 4 5 6 7 8 9 10 13
|
cgrane1 |
|- ( ph -> A =/= B ) |
| 67 |
33
|
oveq2d |
|- ( ph -> ( A I ( ( ( pInvG ` G ) ` B ) ` ( ( ( pInvG ` G ) ` B ) ` X ) ) ) = ( A I X ) ) |
| 68 |
14 67
|
eleqtrrd |
|- ( ph -> B e. ( A I ( ( ( pInvG ` G ) ` B ) ` ( ( ( pInvG ` G ) ` B ) ` X ) ) ) ) |
| 69 |
1 3 2 26 27 4 32 18 6 5 39 5 66 42 68
|
mirhl2 |
|- ( ph -> A ( ( hlG ` G ) ` B ) ( ( ( pInvG ` G ) ` B ) ` X ) ) |
| 70 |
1 2 18 4 39 6 7 39 6 7 65 5 69
|
cgrahl1 |
|- ( ph -> <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrA ` G ) <" A B C "> ) |
| 71 |
1 2 4 18 39 6 7 5 6 7 70 8 9 10 13
|
cgratr |
|- ( ph -> <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrA ` G ) <" D E F "> ) |
| 72 |
1 2 18 4 39 6 7 8 9 10
|
iscgra |
|- ( ph -> ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P E. y e. P ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) ) |
| 73 |
71 72
|
mpbid |
|- ( ph -> E. x e. P E. y e. P ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) |
| 74 |
63 73
|
r19.29vva |
|- ( ph -> <" X B C "> ( cgrA ` G ) <" Y E F "> ) |