| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfcgra2.p |  |-  P = ( Base ` G ) | 
						
							| 2 |  | dfcgra2.i |  |-  I = ( Itv ` G ) | 
						
							| 3 |  | dfcgra2.m |  |-  .- = ( dist ` G ) | 
						
							| 4 |  | dfcgra2.g |  |-  ( ph -> G e. TarskiG ) | 
						
							| 5 |  | dfcgra2.a |  |-  ( ph -> A e. P ) | 
						
							| 6 |  | dfcgra2.b |  |-  ( ph -> B e. P ) | 
						
							| 7 |  | dfcgra2.c |  |-  ( ph -> C e. P ) | 
						
							| 8 |  | dfcgra2.d |  |-  ( ph -> D e. P ) | 
						
							| 9 |  | dfcgra2.e |  |-  ( ph -> E e. P ) | 
						
							| 10 |  | dfcgra2.f |  |-  ( ph -> F e. P ) | 
						
							| 11 |  | sacgr.x |  |-  ( ph -> X e. P ) | 
						
							| 12 |  | sacgr.y |  |-  ( ph -> Y e. P ) | 
						
							| 13 |  | sacgr.1 |  |-  ( ph -> <" A B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 14 |  | sacgr.2 |  |-  ( ph -> B e. ( A I X ) ) | 
						
							| 15 |  | sacgr.3 |  |-  ( ph -> E e. ( D I Y ) ) | 
						
							| 16 |  | sacgr.4 |  |-  ( ph -> B =/= X ) | 
						
							| 17 |  | sacgr.5 |  |-  ( ph -> E =/= Y ) | 
						
							| 18 |  | eqid |  |-  ( hlG ` G ) = ( hlG ` G ) | 
						
							| 19 | 4 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> G e. TarskiG ) | 
						
							| 20 | 11 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> X e. P ) | 
						
							| 21 | 6 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> B e. P ) | 
						
							| 22 | 7 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> C e. P ) | 
						
							| 23 | 12 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> Y e. P ) | 
						
							| 24 | 9 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> E e. P ) | 
						
							| 25 | 10 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> F e. P ) | 
						
							| 26 |  | eqid |  |-  ( LineG ` G ) = ( LineG ` G ) | 
						
							| 27 |  | eqid |  |-  ( pInvG ` G ) = ( pInvG ` G ) | 
						
							| 28 |  | eqid |  |-  ( ( pInvG ` G ) ` E ) = ( ( pInvG ` G ) ` E ) | 
						
							| 29 |  | simpllr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> x e. P ) | 
						
							| 30 | 1 3 2 26 27 19 24 28 29 | mircl |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( ( ( pInvG ` G ) ` E ) ` x ) e. P ) | 
						
							| 31 |  | simplr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> y e. P ) | 
						
							| 32 |  | eqid |  |-  ( ( pInvG ` G ) ` B ) = ( ( pInvG ` G ) ` B ) | 
						
							| 33 | 1 3 2 26 27 4 6 32 11 | mirmir |  |-  ( ph -> ( ( ( pInvG ` G ) ` B ) ` ( ( ( pInvG ` G ) ` B ) ` X ) ) = X ) | 
						
							| 34 |  | eqidd |  |-  ( ph -> B = B ) | 
						
							| 35 |  | eqidd |  |-  ( ph -> C = C ) | 
						
							| 36 | 33 34 35 | s3eqd |  |-  ( ph -> <" ( ( ( pInvG ` G ) ` B ) ` ( ( ( pInvG ` G ) ` B ) ` X ) ) B C "> = <" X B C "> ) | 
						
							| 37 | 36 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> <" ( ( ( pInvG ` G ) ` B ) ` ( ( ( pInvG ` G ) ` B ) ` X ) ) B C "> = <" X B C "> ) | 
						
							| 38 |  | eqid |  |-  ( cgrG ` G ) = ( cgrG ` G ) | 
						
							| 39 | 1 3 2 26 27 4 6 32 11 | mircl |  |-  ( ph -> ( ( ( pInvG ` G ) ` B ) ` X ) e. P ) | 
						
							| 40 | 39 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( ( ( pInvG ` G ) ` B ) ` X ) e. P ) | 
						
							| 41 | 16 | necomd |  |-  ( ph -> X =/= B ) | 
						
							| 42 | 1 3 2 26 27 4 6 32 11 41 | mirne |  |-  ( ph -> ( ( ( pInvG ` G ) ` B ) ` X ) =/= B ) | 
						
							| 43 | 42 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( ( ( pInvG ` G ) ` B ) ` X ) =/= B ) | 
						
							| 44 |  | simpr1 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> ) | 
						
							| 45 | 1 3 2 26 27 19 38 32 28 40 21 29 24 22 31 43 44 | mirtrcgr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> <" ( ( ( pInvG ` G ) ` B ) ` ( ( ( pInvG ` G ) ` B ) ` X ) ) B C "> ( cgrG ` G ) <" ( ( ( pInvG ` G ) ` E ) ` x ) E y "> ) | 
						
							| 46 | 37 45 | eqbrtrrd |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> <" X B C "> ( cgrG ` G ) <" ( ( ( pInvG ` G ) ` E ) ` x ) E y "> ) | 
						
							| 47 | 17 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> E =/= Y ) | 
						
							| 48 | 47 | necomd |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> Y =/= E ) | 
						
							| 49 | 8 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> D e. P ) | 
						
							| 50 |  | simpr2 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> x ( ( hlG ` G ) ` E ) D ) | 
						
							| 51 | 1 2 18 29 49 24 19 50 | hlne1 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> x =/= E ) | 
						
							| 52 | 1 3 2 26 27 19 24 28 29 51 | mirne |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( ( ( pInvG ` G ) ` E ) ` x ) =/= E ) | 
						
							| 53 | 1 2 18 29 49 24 19 50 | hlcomd |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> D ( ( hlG ` G ) ` E ) x ) | 
						
							| 54 | 15 | ad3antrrr |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> E e. ( D I Y ) ) | 
						
							| 55 | 1 2 18 49 29 23 19 24 53 54 | btwnhl |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> E e. ( x I Y ) ) | 
						
							| 56 | 1 3 2 19 29 24 23 55 | tgbtwncom |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> E e. ( Y I x ) ) | 
						
							| 57 | 1 3 2 26 27 19 24 28 29 | mirmir |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( ( ( pInvG ` G ) ` E ) ` ( ( ( pInvG ` G ) ` E ) ` x ) ) = x ) | 
						
							| 58 | 57 | oveq2d |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( Y I ( ( ( pInvG ` G ) ` E ) ` ( ( ( pInvG ` G ) ` E ) ` x ) ) ) = ( Y I x ) ) | 
						
							| 59 | 56 58 | eleqtrrd |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> E e. ( Y I ( ( ( pInvG ` G ) ` E ) ` ( ( ( pInvG ` G ) ` E ) ` x ) ) ) ) | 
						
							| 60 | 1 3 2 26 27 19 28 18 24 23 30 24 48 52 59 | mirhl2 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> Y ( ( hlG ` G ) ` E ) ( ( ( pInvG ` G ) ` E ) ` x ) ) | 
						
							| 61 | 1 2 18 23 30 24 19 60 | hlcomd |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> ( ( ( pInvG ` G ) ` E ) ` x ) ( ( hlG ` G ) ` E ) Y ) | 
						
							| 62 |  | simpr3 |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> y ( ( hlG ` G ) ` E ) F ) | 
						
							| 63 | 1 2 18 19 20 21 22 23 24 25 30 31 46 61 62 | iscgrad |  |-  ( ( ( ( ph /\ x e. P ) /\ y e. P ) /\ ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) -> <" X B C "> ( cgrA ` G ) <" Y E F "> ) | 
						
							| 64 | 1 2 18 4 5 6 7 8 9 10 13 | cgrane2 |  |-  ( ph -> B =/= C ) | 
						
							| 65 | 1 2 4 18 39 6 7 42 64 | cgraid |  |-  ( ph -> <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrA ` G ) <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ) | 
						
							| 66 | 1 2 18 4 5 6 7 8 9 10 13 | cgrane1 |  |-  ( ph -> A =/= B ) | 
						
							| 67 | 33 | oveq2d |  |-  ( ph -> ( A I ( ( ( pInvG ` G ) ` B ) ` ( ( ( pInvG ` G ) ` B ) ` X ) ) ) = ( A I X ) ) | 
						
							| 68 | 14 67 | eleqtrrd |  |-  ( ph -> B e. ( A I ( ( ( pInvG ` G ) ` B ) ` ( ( ( pInvG ` G ) ` B ) ` X ) ) ) ) | 
						
							| 69 | 1 3 2 26 27 4 32 18 6 5 39 5 66 42 68 | mirhl2 |  |-  ( ph -> A ( ( hlG ` G ) ` B ) ( ( ( pInvG ` G ) ` B ) ` X ) ) | 
						
							| 70 | 1 2 18 4 39 6 7 39 6 7 65 5 69 | cgrahl1 |  |-  ( ph -> <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrA ` G ) <" A B C "> ) | 
						
							| 71 | 1 2 4 18 39 6 7 5 6 7 70 8 9 10 13 | cgratr |  |-  ( ph -> <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrA ` G ) <" D E F "> ) | 
						
							| 72 | 1 2 18 4 39 6 7 8 9 10 | iscgra |  |-  ( ph -> ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrA ` G ) <" D E F "> <-> E. x e. P E. y e. P ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) ) | 
						
							| 73 | 71 72 | mpbid |  |-  ( ph -> E. x e. P E. y e. P ( <" ( ( ( pInvG ` G ) ` B ) ` X ) B C "> ( cgrG ` G ) <" x E y "> /\ x ( ( hlG ` G ) ` E ) D /\ y ( ( hlG ` G ) ` E ) F ) ) | 
						
							| 74 | 63 73 | r19.29vva |  |-  ( ph -> <" X B C "> ( cgrA ` G ) <" Y E F "> ) |