Metamath Proof Explorer


Theorem salrestss

Description: A sigma-algebra restricted to one of its elements is a subset of the original sigma-algebra. (Contributed by Glauco Siliprandi, 21-Dec-2024)

Ref Expression
Hypotheses salrestss.1 φSSAlg
salrestss.2 φES
Assertion salrestss φS𝑡ES

Proof

Step Hyp Ref Expression
1 salrestss.1 φSSAlg
2 salrestss.2 φES
3 simpr φxS𝑡ExS𝑡E
4 1 adantr φxS𝑡ESSAlg
5 2 adantr φxS𝑡EES
6 elrest SSAlgESxS𝑡EySx=yE
7 4 5 6 syl2anc φxS𝑡ExS𝑡EySx=yE
8 3 7 mpbid φxS𝑡EySx=yE
9 simprr φySx=yEx=yE
10 1 adantr φySSSAlg
11 simpr φySyS
12 2 adantr φySES
13 10 11 12 salincld φySyES
14 13 adantrr φySx=yEyES
15 9 14 eqeltrd φySx=yExS
16 15 adantlr φxS𝑡EySx=yExS
17 8 16 rexlimddv φxS𝑡ExS
18 17 ssd φS𝑡ES