Metamath Proof Explorer


Theorem satf0

Description: The satisfaction predicate as function over wff codes in the empty model with an empty binary relation. (Contributed by AV, 14-Sep-2023)

Ref Expression
Assertion satf0 Sat=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucω

Proof

Step Hyp Ref Expression
1 0ex V
2 satf VVSat=recfVfxy|ufvfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2nduxy|iωjωx=i𝑔jy=aω|aiajsucω
3 1 1 2 mp2an Sat=recfVfxy|ufvfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2nduxy|iωjωx=i𝑔jy=aω|aiajsucω
4 peano1 ω
5 4 ne0ii ω
6 map0b ωω=
7 5 6 ax-mp ω=
8 7 difeq1i ω2ndu2ndv=2ndu2ndv
9 0dif 2ndu2ndv=
10 8 9 eqtri ω2ndu2ndv=
11 10 eqeq2i y=ω2ndu2ndvy=
12 11 anbi2i x=1stu𝑔1stvy=ω2ndu2ndvx=1stu𝑔1stvy=
13 12 rexbii vfx=1stu𝑔1stvy=ω2ndu2ndvvfx=1stu𝑔1stvy=
14 r19.41v vfx=1stu𝑔1stvy=vfx=1stu𝑔1stvy=
15 13 14 bitri vfx=1stu𝑔1stvy=ω2ndu2ndvvfx=1stu𝑔1stvy=
16 7 rabeqi aω|zizaωi2ndu=a|zizaωi2ndu
17 rab0 a|zizaωi2ndu=
18 16 17 eqtri aω|zizaωi2ndu=
19 18 eqeq2i y=aω|zizaωi2nduy=
20 19 anbi2i x=𝑔i1stuy=aω|zizaωi2ndux=𝑔i1stuy=
21 20 rexbii iωx=𝑔i1stuy=aω|zizaωi2nduiωx=𝑔i1stuy=
22 r19.41v iωx=𝑔i1stuy=iωx=𝑔i1stuy=
23 21 22 bitri iωx=𝑔i1stuy=aω|zizaωi2nduiωx=𝑔i1stuy=
24 15 23 orbi12i vfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2nduvfx=1stu𝑔1stvy=iωx=𝑔i1stuy=
25 24 rexbii ufvfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2nduufvfx=1stu𝑔1stvy=iωx=𝑔i1stuy=
26 andir vfx=1stu𝑔1stviωx=𝑔i1stuy=vfx=1stu𝑔1stvy=iωx=𝑔i1stuy=
27 26 bicomi vfx=1stu𝑔1stvy=iωx=𝑔i1stuy=vfx=1stu𝑔1stviωx=𝑔i1stuy=
28 27 rexbii ufvfx=1stu𝑔1stvy=iωx=𝑔i1stuy=ufvfx=1stu𝑔1stviωx=𝑔i1stuy=
29 r19.41v ufvfx=1stu𝑔1stviωx=𝑔i1stuy=ufvfx=1stu𝑔1stviωx=𝑔i1stuy=
30 25 28 29 3bitri ufvfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2nduufvfx=1stu𝑔1stviωx=𝑔i1stuy=
31 30 biancomi ufvfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2nduy=ufvfx=1stu𝑔1stviωx=𝑔i1stu
32 31 opabbii xy|ufvfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2ndu=xy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu
33 32 uneq2i fxy|ufvfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2ndu=fxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu
34 33 mpteq2i fVfxy|ufvfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2ndu=fVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stu
35 7 rabeqi aω|aiaj=a|aiaj
36 rab0 a|aiaj=
37 35 36 eqtri aω|aiaj=
38 37 eqeq2i y=aω|aiajy=
39 38 anbi2i x=i𝑔jy=aω|aiajx=i𝑔jy=
40 39 2rexbii iωjωx=i𝑔jy=aω|aiajiωjωx=i𝑔jy=
41 r19.41vv iωjωx=i𝑔jy=iωjωx=i𝑔jy=
42 40 41 bitri iωjωx=i𝑔jy=aω|aiajiωjωx=i𝑔jy=
43 42 biancomi iωjωx=i𝑔jy=aω|aiajy=iωjωx=i𝑔j
44 43 opabbii xy|iωjωx=i𝑔jy=aω|aiaj=xy|y=iωjωx=i𝑔j
45 rdgeq12 fVfxy|ufvfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2ndu=fVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|iωjωx=i𝑔jy=aω|aiaj=xy|y=iωjωx=i𝑔jrecfVfxy|ufvfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2nduxy|iωjωx=i𝑔jy=aω|aiaj=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔j
46 34 44 45 mp2an recfVfxy|ufvfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2nduxy|iωjωx=i𝑔jy=aω|aiaj=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔j
47 46 reseq1i recfVfxy|ufvfx=1stu𝑔1stvy=ω2ndu2ndviωx=𝑔i1stuy=aω|zizaωi2nduxy|iωjωx=i𝑔jy=aω|aiajsucω=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucω
48 3 47 eqtri Sat=recfVfxy|y=ufvfx=1stu𝑔1stviωx=𝑔i1stuxy|y=iωjωx=i𝑔jsucω