Metamath Proof Explorer


Theorem satfn

Description: The satisfaction predicate for wff codes in the model M and the binary relation E on M is a function over suc _om . (Contributed by AV, 6-Oct-2023)

Ref Expression
Assertion satfn MVEWMSatEFnsucω

Proof

Step Hyp Ref Expression
1 rdgfnon recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajFnOn
2 1 a1i MVEWrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajFnOn
3 ordom Ordω
4 ordsuc OrdωOrdsucω
5 3 4 mpbi Ordsucω
6 ordsson OrdsucωsucωOn
7 5 6 mp1i MVEWsucωOn
8 2 7 fnssresd MVEWrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωFnsucω
9 satf MVEWMSatE=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucω
10 9 fneq1d MVEWMSatEFnsucωrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωFnsucω
11 8 10 mpbird MVEWMSatEFnsucω