Metamath Proof Explorer


Theorem satom

Description: The satisfaction predicate for wff codes in the model M and the binary relation E on M at omega ( _om ). (Contributed by AV, 6-Oct-2023)

Ref Expression
Assertion satom MVEWMSatEω=nωMSatEn

Proof

Step Hyp Ref Expression
1 satf MVEWMSatE=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucω
2 1 fveq1d MVEWMSatEω=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωω
3 omex ωV
4 3 sucid ωsucω
5 fvres ωsucωrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωω=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajω
6 4 5 mp1i MVEWrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωω=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajω
7 limom Limω
8 3 7 pm3.2i ωVLimω
9 rdglim2a ωVLimωrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajω=nωrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajn
10 8 9 mp1i MVEWrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajω=nωrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajn
11 1 fveq1d MVEWMSatEn=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωn
12 11 adantr MVEWnωMSatEn=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωn
13 elelsuc nωnsucω
14 13 adantl MVEWnωnsucω
15 14 fvresd MVEWnωrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωn=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajn
16 12 15 eqtr2d MVEWnωrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajn=MSatEn
17 16 iuneq2dv MVEWnωrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajn=nωMSatEn
18 10 17 eqtrd MVEWrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajω=nωMSatEn
19 2 6 18 3eqtrd MVEWMSatEω=nωMSatEn