Metamath Proof Explorer


Theorem satfvsuclem1

Description: Lemma 1 for satfvsuc . (Contributed by AV, 8-Oct-2023)

Ref Expression
Hypothesis satfv0.s S=MSatE
Assertion satfvsuclem1 MVEWNωxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫MωV

Proof

Step Hyp Ref Expression
1 satfv0.s S=MSatE
2 ancom uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mωy𝒫MωuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
3 2 opabbii xy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mω=xy|y𝒫MωuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
4 ovex MωV
5 4 pwex 𝒫MωV
6 5 a1i MVEWNω𝒫MωV
7 fvex SNV
8 unab x|vSNx=1stu𝑔1stvy=Mω2ndu2ndvx|iωx=𝑔i1stuy=aMω|zMizaωi2ndu=x|vSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu
9 7 abrexex x|vSNx=1stu𝑔1stvV
10 simpl x=1stu𝑔1stvy=Mω2ndu2ndvx=1stu𝑔1stv
11 10 reximi vSNx=1stu𝑔1stvy=Mω2ndu2ndvvSNx=1stu𝑔1stv
12 11 ss2abi x|vSNx=1stu𝑔1stvy=Mω2ndu2ndvx|vSNx=1stu𝑔1stv
13 9 12 ssexi x|vSNx=1stu𝑔1stvy=Mω2ndu2ndvV
14 omex ωV
15 14 abrexex x|iωx=𝑔i1stuV
16 simpl x=𝑔i1stuy=aMω|zMizaωi2ndux=𝑔i1stu
17 16 reximi iωx=𝑔i1stuy=aMω|zMizaωi2nduiωx=𝑔i1stu
18 17 ss2abi x|iωx=𝑔i1stuy=aMω|zMizaωi2ndux|iωx=𝑔i1stu
19 15 18 ssexi x|iωx=𝑔i1stuy=aMω|zMizaωi2nduV
20 13 19 unex x|vSNx=1stu𝑔1stvy=Mω2ndu2ndvx|iωx=𝑔i1stuy=aMω|zMizaωi2nduV
21 8 20 eqeltrri x|vSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduV
22 21 a1i MVEWNωy𝒫MωuSNx|vSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduV
23 22 ralrimiva MVEWNωy𝒫MωuSNx|vSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduV
24 abrexex2g SNVuSNx|vSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduVx|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduV
25 7 23 24 sylancr MVEWNωy𝒫Mωx|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduV
26 6 25 opabex3rd MVEWNωxy|y𝒫MωuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduV
27 3 26 eqeltrid MVEWNωxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫MωV