Metamath Proof Explorer


Theorem satfvsuclem2

Description: Lemma 2 for satfvsuc . (Contributed by AV, 8-Oct-2023)

Ref Expression
Hypothesis satfv0.s S=MSatE
Assertion satfvsuclem2 MVEWNωxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduV

Proof

Step Hyp Ref Expression
1 satfv0.s S=MSatE
2 r19.41v vSNx=1stu𝑔1stvy=Mω2ndu2ndvy𝒫MωvSNx=1stu𝑔1stvy=Mω2ndu2ndvy𝒫Mω
3 r19.41v iωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mωiωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mω
4 2 3 orbi12i vSNx=1stu𝑔1stvy=Mω2ndu2ndvy𝒫Mωiωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫MωvSNx=1stu𝑔1stvy=Mω2ndu2ndvy𝒫Mωiωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mω
5 ovex MωV
6 difelpw MωVMω2ndu2ndv𝒫Mω
7 5 6 ax-mp Mω2ndu2ndv𝒫Mω
8 eleq1 y=Mω2ndu2ndvy𝒫MωMω2ndu2ndv𝒫Mω
9 7 8 mpbiri y=Mω2ndu2ndvy𝒫Mω
10 9 pm4.71i y=Mω2ndu2ndvy=Mω2ndu2ndvy𝒫Mω
11 10 bianass x=1stu𝑔1stvy=Mω2ndu2ndvx=1stu𝑔1stvy=Mω2ndu2ndvy𝒫Mω
12 11 rexbii vSNx=1stu𝑔1stvy=Mω2ndu2ndvvSNx=1stu𝑔1stvy=Mω2ndu2ndvy𝒫Mω
13 rabelpw MωVaMω|zMizaωi2ndu𝒫Mω
14 5 13 ax-mp aMω|zMizaωi2ndu𝒫Mω
15 eleq1 y=aMω|zMizaωi2nduy𝒫MωaMω|zMizaωi2ndu𝒫Mω
16 14 15 mpbiri y=aMω|zMizaωi2nduy𝒫Mω
17 16 pm4.71i y=aMω|zMizaωi2nduy=aMω|zMizaωi2nduy𝒫Mω
18 17 bianass x=𝑔i1stuy=aMω|zMizaωi2ndux=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mω
19 18 rexbii iωx=𝑔i1stuy=aMω|zMizaωi2nduiωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mω
20 12 19 orbi12i vSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduvSNx=1stu𝑔1stvy=Mω2ndu2ndvy𝒫Mωiωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mω
21 andir vSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫MωvSNx=1stu𝑔1stvy=Mω2ndu2ndvy𝒫Mωiωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mω
22 4 20 21 3bitr4i vSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mω
23 22 rexbii uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mω
24 r19.41v uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫MωuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mω
25 23 24 bitri uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduuSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mω
26 25 opabbii xy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2ndu=xy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫Mω
27 1 satfvsuclem1 MVEWNωxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduy𝒫MωV
28 26 27 eqeltrid MVEWNωxy|uSNvSNx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduV