Description: Lemma 2 for satfvsuc . (Contributed by AV, 8-Oct-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | satfv0.s | |
|
Assertion | satfvsuclem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | satfv0.s | |
|
2 | r19.41v | |
|
3 | r19.41v | |
|
4 | 2 3 | orbi12i | |
5 | ovex | |
|
6 | difelpw | |
|
7 | 5 6 | ax-mp | |
8 | eleq1 | |
|
9 | 7 8 | mpbiri | |
10 | 9 | pm4.71i | |
11 | 10 | bianass | |
12 | 11 | rexbii | |
13 | rabelpw | |
|
14 | 5 13 | ax-mp | |
15 | eleq1 | |
|
16 | 14 15 | mpbiri | |
17 | 16 | pm4.71i | |
18 | 17 | bianass | |
19 | 18 | rexbii | |
20 | 12 19 | orbi12i | |
21 | andir | |
|
22 | 4 20 21 | 3bitr4i | |
23 | 22 | rexbii | |
24 | r19.41v | |
|
25 | 23 24 | bitri | |
26 | 25 | opabbii | |
27 | 1 | satfvsuclem1 | |
28 | 26 27 | eqeltrid | |