Metamath Proof Explorer


Theorem satfvsucom

Description: The satisfaction predicate as function over wff codes at a successor of _om . (Contributed by AV, 22-Sep-2023)

Ref Expression
Hypothesis satfvsucom.s S=MSatE
Assertion satfvsucom MVEWNsucωSN=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajN

Proof

Step Hyp Ref Expression
1 satfvsucom.s S=MSatE
2 satf MVEWMSatE=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucω
3 2 3adant3 MVEWNsucωMSatE=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucω
4 1 3 eqtrid MVEWNsucωS=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucω
5 4 fveq1d MVEWNsucωSN=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωN
6 fvres NsucωrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωN=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajN
7 6 3ad2ant3 MVEWNsucωrecfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajsucωN=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajN
8 5 7 eqtrd MVEWNsucωSN=recfVfxy|ufvfx=1stu𝑔1stvy=Mω2ndu2ndviωx=𝑔i1stuy=aMω|zMizaωi2nduxy|iωjωx=i𝑔jy=aMω|aiEajN