Metamath Proof Explorer
		
		
		
		Description:  A lemma for eliminating inequality, in inference form.  (Contributed by Giovanni Mascellani, 31-May-2019)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | sbceq1ddi.1 |  | 
					
						|  |  | sbceq1ddi.2 |  | 
					
						|  |  | sbceq1ddi.3 |  | 
					
						|  |  | sbceq1ddi.4 |  | 
				
					|  | Assertion | sbceq1ddi |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sbceq1ddi.1 |  | 
						
							| 2 |  | sbceq1ddi.2 |  | 
						
							| 3 |  | sbceq1ddi.3 |  | 
						
							| 4 |  | sbceq1ddi.4 |  | 
						
							| 5 | 1 | adantr |  | 
						
							| 6 | 2 3 | sylibr |  | 
						
							| 7 | 6 | adantl |  | 
						
							| 8 | 5 7 | sbceq1dd |  | 
						
							| 9 | 8 4 | sylib |  |