Metamath Proof Explorer


Theorem sbcies

Description: A special version of class substitution commonly used for structures. (Contributed by Thierry Arnoux, 14-Mar-2019)

Ref Expression
Hypotheses sbcies.a A = E W
sbcies.1 a = A φ ψ
Assertion sbcies w = W [˙ E w / a]˙ ψ φ

Proof

Step Hyp Ref Expression
1 sbcies.a A = E W
2 sbcies.1 a = A φ ψ
3 fvexd w = W E w V
4 simpr w = W a = E w a = E w
5 fveq2 w = W E w = E W
6 1 5 eqtr4id w = W A = E w
7 6 adantr w = W a = E w A = E w
8 4 7 eqtr4d w = W a = E w a = A
9 8 2 syl w = W a = E w φ ψ
10 9 bicomd w = W a = E w ψ φ
11 3 10 sbcied w = W [˙ E w / a]˙ ψ φ