Metamath Proof Explorer


Theorem sclnbgrel

Description: Characterization of a member X of the semiclosed neighborhood of a vertex N in a graph G . (Contributed by AV, 16-May-2025)

Ref Expression
Hypotheses dfsclnbgr2.v V = Vtx G
dfsclnbgr2.s S = n V | e E N n e
dfsclnbgr2.e E = Edg G
Assertion sclnbgrel X S X V e E N X e

Proof

Step Hyp Ref Expression
1 dfsclnbgr2.v V = Vtx G
2 dfsclnbgr2.s S = n V | e E N n e
3 dfsclnbgr2.e E = Edg G
4 2 eleq2i X S X n V | e E N n e
5 preq2 n = X N n = N X
6 5 sseq1d n = X N n e N X e
7 6 rexbidv n = X e E N n e e E N X e
8 7 elrab X n V | e E N n e X V e E N X e
9 4 8 bitri X S X V e E N X e