Metamath Proof Explorer


Theorem scmatf

Description: There is a function from a ring to any ring of scalar matrices over this ring. (Contributed by AV, 25-Dec-2019)

Ref Expression
Hypotheses scmatrhmval.k K=BaseR
scmatrhmval.a A=NMatR
scmatrhmval.o 1˙=1A
scmatrhmval.t ˙=A
scmatrhmval.f F=xKx˙1˙
scmatrhmval.c C=NScMatR
Assertion scmatf NFinRRingF:KC

Proof

Step Hyp Ref Expression
1 scmatrhmval.k K=BaseR
2 scmatrhmval.a A=NMatR
3 scmatrhmval.o 1˙=1A
4 scmatrhmval.t ˙=A
5 scmatrhmval.f F=xKx˙1˙
6 scmatrhmval.c C=NScMatR
7 eqid BaseA=BaseA
8 eqid 0R=0R
9 2 7 1 8 6 scmatid NFinRRing1AC
10 3 9 eqeltrid NFinRRing1˙C
11 10 anim1ci NFinRRingxKxK1˙C
12 1 2 6 4 smatvscl NFinRRingxK1˙Cx˙1˙C
13 11 12 syldan NFinRRingxKx˙1˙C
14 13 5 fmptd NFinRRingF:KC