Step |
Hyp |
Ref |
Expression |
1 |
|
smatvscl.k |
|
2 |
|
smatvscl.a |
|
3 |
|
smatvscl.s |
|
4 |
|
smatvscl.t |
|
5 |
|
eqid |
|
6 |
|
eqid |
|
7 |
|
eqid |
|
8 |
5 2 6 7 4 3
|
scmatel |
|
9 |
|
oveq2 |
|
10 |
9
|
adantl |
|
11 |
2
|
matlmod |
|
12 |
11
|
ad3antrrr |
|
13 |
2
|
matsca2 |
|
14 |
13
|
fveq2d |
|
15 |
1 14
|
eqtrid |
|
16 |
15
|
eleq2d |
|
17 |
16
|
biimpa |
|
18 |
17
|
ad2antrr |
|
19 |
13
|
ad2antrr |
|
20 |
19
|
fveq2d |
|
21 |
20
|
eleq2d |
|
22 |
21
|
biimpa |
|
23 |
2
|
matring |
|
24 |
6 7
|
ringidcl |
|
25 |
23 24
|
syl |
|
26 |
25
|
ad3antrrr |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
|
eqid |
|
30 |
6 27 4 28 29
|
lmodvsass |
|
31 |
12 18 22 26 30
|
syl13anc |
|
32 |
31
|
eqcomd |
|
33 |
|
simplll |
|
34 |
13
|
adantr |
|
35 |
34
|
eqcomd |
|
36 |
35
|
ad2antrr |
|
37 |
36
|
fveq2d |
|
38 |
37
|
oveqd |
|
39 |
|
simp-4r |
|
40 |
|
simpllr |
|
41 |
1
|
eqcomi |
|
42 |
41
|
eleq2i |
|
43 |
42
|
biimpi |
|
44 |
43
|
adantl |
|
45 |
|
eqid |
|
46 |
1 45
|
ringcl |
|
47 |
39 40 44 46
|
syl3anc |
|
48 |
38 47
|
eqeltrd |
|
49 |
1 2 6 4
|
matvscl |
|
50 |
33 48 26 49
|
syl12anc |
|
51 |
|
oveq1 |
|
52 |
51
|
eqcoms |
|
53 |
52
|
adantl |
|
54 |
48 53
|
rspcedeq2vd |
|
55 |
1 2 6 7 4 3
|
scmatel |
|
56 |
55
|
ad3antrrr |
|
57 |
50 54 56
|
mpbir2and |
|
58 |
32 57
|
eqeltrd |
|
59 |
58
|
adantr |
|
60 |
10 59
|
eqeltrd |
|
61 |
60
|
rexlimdva2 |
|
62 |
61
|
expimpd |
|
63 |
62
|
ex |
|
64 |
63
|
com23 |
|
65 |
8 64
|
sylbid |
|
66 |
65
|
com23 |
|
67 |
66
|
imp32 |
|