Metamath Proof Explorer


Theorem seglelin

Description: Linearity law for segment comparison. Theorem 5.10 of Schwabhauser p. 42. (Contributed by Scott Fenton, 14-Oct-2013)

Ref Expression
Assertion seglelin N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Seg C D C D Seg A B

Proof

Step Hyp Ref Expression
1 segcon2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B Btwn A x x Btwn A B A x Cgr C D
2 andir B Btwn A x x Btwn A B A x Cgr C D B Btwn A x A x Cgr C D x Btwn A B A x Cgr C D
3 simpl1 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N N
4 simpl2l N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N A 𝔼 N
5 simpr N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N x 𝔼 N
6 simpl3 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N C 𝔼 N D 𝔼 N
7 cgrcom N A 𝔼 N x 𝔼 N C 𝔼 N D 𝔼 N A x Cgr C D C D Cgr A x
8 3 4 5 6 7 syl121anc N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N A x Cgr C D C D Cgr A x
9 8 anbi2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N x Btwn A B A x Cgr C D x Btwn A B C D Cgr A x
10 9 orbi2d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B Btwn A x A x Cgr C D x Btwn A B A x Cgr C D B Btwn A x A x Cgr C D x Btwn A B C D Cgr A x
11 2 10 syl5bb N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B Btwn A x x Btwn A B A x Cgr C D B Btwn A x A x Cgr C D x Btwn A B C D Cgr A x
12 11 rexbidva N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B Btwn A x x Btwn A B A x Cgr C D x 𝔼 N B Btwn A x A x Cgr C D x Btwn A B C D Cgr A x
13 brsegle2 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Seg C D x 𝔼 N B Btwn A x A x Cgr C D
14 brsegle N C 𝔼 N D 𝔼 N A 𝔼 N B 𝔼 N C D Seg A B x 𝔼 N x Btwn A B C D Cgr A x
15 14 3com23 N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N C D Seg A B x 𝔼 N x Btwn A B C D Cgr A x
16 13 15 orbi12d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Seg C D C D Seg A B x 𝔼 N B Btwn A x A x Cgr C D x 𝔼 N x Btwn A B C D Cgr A x
17 r19.43 x 𝔼 N B Btwn A x A x Cgr C D x Btwn A B C D Cgr A x x 𝔼 N B Btwn A x A x Cgr C D x 𝔼 N x Btwn A B C D Cgr A x
18 16 17 bitr4di N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Seg C D C D Seg A B x 𝔼 N B Btwn A x A x Cgr C D x Btwn A B C D Cgr A x
19 12 18 bitr4d N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N x 𝔼 N B Btwn A x x Btwn A B A x Cgr C D A B Seg C D C D Seg A B
20 1 19 mpbid N A 𝔼 N B 𝔼 N C 𝔼 N D 𝔼 N A B Seg C D C D Seg A B