Metamath Proof Explorer


Theorem selvcllem5

Description: The fifth argument passed to evalSub is in the domain (a function I --> E ). (Contributed by SN, 22-Feb-2024)

Ref Expression
Hypotheses selvcllem5.u U=IJmPolyR
selvcllem5.t T=JmPolyU
selvcllem5.c C=algScT
selvcllem5.e E=BaseT
selvcllem5.f F=xIifxJJmVarUxCIJmVarRx
selvcllem5.i φIV
selvcllem5.r φRCRing
selvcllem5.j φJI
Assertion selvcllem5 φFEI

Proof

Step Hyp Ref Expression
1 selvcllem5.u U=IJmPolyR
2 selvcllem5.t T=JmPolyU
3 selvcllem5.c C=algScT
4 selvcllem5.e E=BaseT
5 selvcllem5.f F=xIifxJJmVarUxCIJmVarRx
6 selvcllem5.i φIV
7 selvcllem5.r φRCRing
8 selvcllem5.j φJI
9 eqid JmVarU=JmVarU
10 6 8 ssexd φJV
11 10 adantr φxJJV
12 6 difexd φIJV
13 crngring RCRingRRing
14 7 13 syl φRRing
15 1 mplring IJVRRingURing
16 12 14 15 syl2anc φURing
17 16 adantr φxJURing
18 simpr φxJxJ
19 2 9 4 11 17 18 mvrcl φxJJmVarUxE
20 19 adantlr φxIxJJmVarUxE
21 eqid BaseU=BaseU
22 2 4 21 3 10 16 mplasclf φC:BaseUE
23 22 ad2antrr φxI¬xJC:BaseUE
24 eqid IJmVarR=IJmVarR
25 12 ad2antrr φxI¬xJIJV
26 14 ad2antrr φxI¬xJRRing
27 eldif xIJxI¬xJ
28 27 biimpri xI¬xJxIJ
29 28 adantll φxI¬xJxIJ
30 1 24 21 25 26 29 mvrcl φxI¬xJIJmVarRxBaseU
31 23 30 ffvelcdmd φxI¬xJCIJmVarRxE
32 20 31 ifclda φxIifxJJmVarUxCIJmVarRxE
33 32 5 fmptd φF:IE
34 fvexd φBaseTV
35 4 34 eqeltrid φEV
36 35 6 elmapd φFEIF:IE
37 33 36 mpbird φFEI