Metamath Proof Explorer


Theorem selvval2lemn

Description: A lemma to illustrate the purpose of selvval2lem3 and the value of Q . Will be renamed in the future when this section is moved to main. (Contributed by SN, 5-Nov-2023)

Ref Expression
Hypotheses selvval2lemn.u U = I J mPoly R
selvval2lemn.t T = J mPoly U
selvval2lemn.c C = algSc T
selvval2lemn.d D = C algSc U
selvval2lemn.q Q = I evalSub T ran D
selvval2lemn.w W = I mPoly S
selvval2lemn.s S = T 𝑠 ran D
selvval2lemn.x X = T 𝑠 B I
selvval2lemn.b B = Base T
selvval2lemn.i φ I V
selvval2lemn.r φ R CRing
selvval2lemn.j φ J I
Assertion selvval2lemn φ Q W RingHom X

Proof

Step Hyp Ref Expression
1 selvval2lemn.u U = I J mPoly R
2 selvval2lemn.t T = J mPoly U
3 selvval2lemn.c C = algSc T
4 selvval2lemn.d D = C algSc U
5 selvval2lemn.q Q = I evalSub T ran D
6 selvval2lemn.w W = I mPoly S
7 selvval2lemn.s S = T 𝑠 ran D
8 selvval2lemn.x X = T 𝑠 B I
9 selvval2lemn.b B = Base T
10 selvval2lemn.i φ I V
11 selvval2lemn.r φ R CRing
12 selvval2lemn.j φ J I
13 10 12 ssexd φ J V
14 10 difexd φ I J V
15 1 mplcrng I J V R CRing U CRing
16 14 11 15 syl2anc φ U CRing
17 2 mplcrng J V U CRing T CRing
18 13 16 17 syl2anc φ T CRing
19 1 2 3 4 14 13 11 selvval2lem3 φ ran D SubRing T
20 5 6 7 8 9 evlsrhm I V T CRing ran D SubRing T Q W RingHom X
21 10 18 19 20 syl3anc φ Q W RingHom X