Metamath Proof Explorer


Theorem sepnsepo

Description: Open neighborhood and neighborhood is equivalent regarding disjointness for both sides. Namely, separatedness by open neighborhoods is equivalent to separatedness by neighborhoods. (Contributed by Zhi Wang, 1-Sep-2024)

Ref Expression
Hypothesis sepnsepolem2.1 φJTop
Assertion sepnsepo φxneiJCyneiJDxy=xJyJCxDyxy=

Proof

Step Hyp Ref Expression
1 sepnsepolem2.1 φJTop
2 id JTopJTop
3 2 sepnsepolem2 JTopyneiJDxy=yJDyxy=
4 3 anbi2d JTopCxyneiJDxy=CxyJDyxy=
5 4 rexbidv JTopxJCxyneiJDxy=xJCxyJDyxy=
6 ssrin zxzyxy
7 sseq0 zyxyxy=zy=
8 7 ex zyxyxy=zy=
9 6 8 syl zxxy=zy=
10 9 adantl JTopzxxy=zy=
11 10 reximdv JTopzxyneiJDxy=yneiJDzy=
12 simpr JTopx=zx=z
13 12 ineq1d JTopx=zxy=zy
14 13 eqeq1d JTopx=zxy=zy=
15 14 rexbidv JTopx=zyneiJDxy=yneiJDzy=
16 2 11 15 opnneieqv JTopxneiJCyneiJDxy=xJCxyneiJDxy=
17 sepnsepolem1 xJyJCxDyxy=xJCxyJDyxy=
18 17 a1i JTopxJyJCxDyxy=xJCxyJDyxy=
19 5 16 18 3bitr4d JTopxneiJCyneiJDxy=xJyJCxDyxy=
20 1 19 syl φxneiJCyneiJDxy=xJyJCxDyxy=