Metamath Proof Explorer


Theorem sepnsepolem2

Description: Open neighborhood and neighborhood is equivalent regarding disjointness. Lemma for sepnsepo . Proof could be shortened by 1 step using ssdisjdr . (Contributed by Zhi Wang, 1-Sep-2024)

Ref Expression
Hypothesis sepnsepolem2.1 φJTop
Assertion sepnsepolem2 φyneiJDxy=yJDyxy=

Proof

Step Hyp Ref Expression
1 sepnsepolem2.1 φJTop
2 id JTopJTop
3 sslin zyxzxy
4 sseq0 xzxyxy=xz=
5 4 ex xzxyxy=xz=
6 3 5 syl zyxy=xz=
7 6 adantl JTopzyxy=xz=
8 ineq2 y=zxy=xz
9 8 eqeq1d y=zxy=xz=
10 9 adantl JTopy=zxy=xz=
11 2 7 10 opnneieqv JTopyneiJDxy=yJDyxy=
12 1 11 syl φyneiJDxy=yJDyxy=