Metamath Proof Explorer


Theorem seqabs

Description: Generalized triangle inequality: the absolute value of a finite sum is less than or equal to the sum of absolute values. (Contributed by Mario Carneiro, 26-Mar-2014) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqabs.1 φNM
seqabs.2 φkMNFk
seqabs.3 φkMNGk=Fk
Assertion seqabs φseqM+FNseqM+GN

Proof

Step Hyp Ref Expression
1 seqabs.1 φNM
2 seqabs.2 φkMNFk
3 seqabs.3 φkMNGk=Fk
4 fzfid φMNFin
5 4 2 fsumabs φk=MNFkk=MNFk
6 eqidd φkMNFk=Fk
7 6 1 2 fsumser φk=MNFk=seqM+FN
8 7 fveq2d φk=MNFk=seqM+FN
9 abscl FkFk
10 9 recnd FkFk
11 2 10 syl φkMNFk
12 3 1 11 fsumser φk=MNFk=seqM+GN
13 5 8 12 3brtr3d φseqM+FNseqM+GN