Metamath Proof Explorer


Theorem seqcl

Description: Closure properties of the recursive sequence builder. (Contributed by Mario Carneiro, 2-Jul-2013) (Revised by Mario Carneiro, 27-May-2014)

Ref Expression
Hypotheses seqcl.1 φNM
seqcl.2 φxMNFxS
seqcl.3 φxSySx+˙yS
Assertion seqcl φseqM+˙FNS

Proof

Step Hyp Ref Expression
1 seqcl.1 φNM
2 seqcl.2 φxMNFxS
3 seqcl.3 φxSySx+˙yS
4 fveq2 x=MFx=FM
5 4 eleq1d x=MFxSFMS
6 2 ralrimiva φxMNFxS
7 eluzfz1 NMMMN
8 1 7 syl φMMN
9 5 6 8 rspcdva φFMS
10 eluzel2 NMM
11 1 10 syl φM
12 fzp1ss MM+1NMN
13 11 12 syl φM+1NMN
14 13 sselda φxM+1NxMN
15 14 2 syldan φxM+1NFxS
16 9 3 1 15 seqcl2 φseqM+˙FNS