Metamath Proof Explorer


Theorem ser0f

Description: A zero-valued infinite series is equal to the constant zero function. (Contributed by Mario Carneiro, 8-Feb-2014)

Ref Expression
Hypothesis ser0.1 Z=M
Assertion ser0f MseqM+Z×0=Z×0

Proof

Step Hyp Ref Expression
1 ser0.1 Z=M
2 1 ser0 kZseqM+Z×0k=0
3 c0ex 0V
4 3 fvconst2 kZZ×0k=0
5 2 4 eqtr4d kZseqM+Z×0k=Z×0k
6 5 rgen kZseqM+Z×0k=Z×0k
7 seqfn MseqM+Z×0FnM
8 1 fneq2i seqM+Z×0FnZseqM+Z×0FnM
9 7 8 sylibr MseqM+Z×0FnZ
10 3 fconst Z×0:Z0
11 ffn Z×0:Z0Z×0FnZ
12 10 11 ax-mp Z×0FnZ
13 eqfnfv seqM+Z×0FnZZ×0FnZseqM+Z×0=Z×0kZseqM+Z×0k=Z×0k
14 9 12 13 sylancl MseqM+Z×0=Z×0kZseqM+Z×0k=Z×0k
15 6 14 mpbiri MseqM+Z×0=Z×0