Metamath Proof Explorer


Theorem setc1ocofval

Description: Composition in the trivial category. (Contributed by Zhi Wang, 22-Oct-2025)

Ref Expression
Hypothesis funcsetc1o.1 1 ˙ = SetCat 1 𝑜
Assertion setc1ocofval = comp 1 ˙

Proof

Step Hyp Ref Expression
1 funcsetc1o.1 1 ˙ = SetCat 1 𝑜
2 df-ot =
3 2 sneqi =
4 opex V
5 0ex V
6 snex V
7 df1o2 1 𝑜 =
8 7 fveq2i SetCat 1 𝑜 = SetCat
9 1 8 eqtri 1 ˙ = SetCat
10 snex V
11 10 a1i V
12 eqid comp 1 ˙ = comp 1 ˙
13 9 11 12 setccofval comp 1 ˙ = v × , z g z 2 nd v , f 2 nd v 1 st v g f
14 13 mptru comp 1 ˙ = v × , z g z 2 nd v , f 2 nd v 1 st v g f
15 5 5 xpsn × =
16 eqid =
17 eqid g z 2 nd v , f 2 nd v 1 st v g f = g z 2 nd v , f 2 nd v 1 st v g f
18 15 16 17 mpoeq123i v × , z g z 2 nd v , f 2 nd v 1 st v g f = v , z g z 2 nd v , f 2 nd v 1 st v g f
19 14 18 eqtri comp 1 ˙ = v , z g z 2 nd v , f 2 nd v 1 st v g f
20 5 5 op2ndd v = 2 nd v =
21 20 oveq2d v = z 2 nd v = z
22 5 5 op1std v = 1 st v =
23 20 22 oveq12d v = 2 nd v 1 st v =
24 0map0sn0 =
25 23 24 eqtrdi v = 2 nd v 1 st v =
26 eqidd v = g f = g f
27 21 25 26 mpoeq123dv v = g z 2 nd v , f 2 nd v 1 st v g f = g z , f g f
28 oveq1 z = z =
29 28 24 eqtrdi z = z =
30 eqidd z = =
31 eqidd z = g f = g f
32 29 30 31 mpoeq123dv z = g z , f g f = g , f g f
33 eqid g , f g f = g , f g f
34 coeq1 g = g f = f
35 co01 f =
36 34 35 eqtrdi g = g f =
37 eqidd f = =
38 33 36 37 mposn V V V g , f g f =
39 5 5 5 38 mp3an g , f g f =
40 32 39 eqtrdi z = g z , f g f =
41 df-ot =
42 41 sneqi =
43 40 42 eqtr4di z = g z , f g f =
44 19 27 43 mposn V V V comp 1 ˙ =
45 4 5 6 44 mp3an comp 1 ˙ =
46 3 45 eqtr4i = comp 1 ˙