Metamath Proof Explorer


Theorem setc1strwun

Description: A constructed one-slot structure with the objects of the category of sets as base set in a weak universe. (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses setc1strwun.s S=SetCatU
setc1strwun.c C=BaseS
setc1strwun.u φUWUni
setc1strwun.o φωU
Assertion setc1strwun φXCBasendxXU

Proof

Step Hyp Ref Expression
1 setc1strwun.s S=SetCatU
2 setc1strwun.c C=BaseS
3 setc1strwun.u φUWUni
4 setc1strwun.o φωU
5 1 3 setcbas φU=BaseS
6 2 5 eqtr4id φC=U
7 6 eleq2d φXCXU
8 7 biimpa φXCXU
9 eqid BasendxX=BasendxX
10 9 3 4 1strwun φXUBasendxXU
11 8 10 syldan φXCBasendxXU