Metamath Proof Explorer


Theorem setsmsdsOLD

Description: Obsolete proof of setsmsds as of 11-Nov-2024. The distance function of a constructed metric space. (Contributed by Mario Carneiro, 28-Aug-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses setsms.x φX=BaseM
setsms.d φD=distMX×X
setsms.k φK=MsSetTopSetndxMetOpenD
Assertion setsmsdsOLD φdistM=distK

Proof

Step Hyp Ref Expression
1 setsms.x φX=BaseM
2 setsms.d φD=distMX×X
3 setsms.k φK=MsSetTopSetndxMetOpenD
4 dsid dist=Slotdistndx
5 9re 9
6 1nn 1
7 2nn0 20
8 9nn0 90
9 9lt10 9<10
10 6 7 8 9 declti 9<12
11 5 10 gtneii 129
12 dsndx distndx=12
13 tsetndx TopSetndx=9
14 12 13 neeq12i distndxTopSetndx129
15 11 14 mpbir distndxTopSetndx
16 4 15 setsnid distM=distMsSetTopSetndxMetOpenD
17 3 fveq2d φdistK=distMsSetTopSetndxMetOpenD
18 16 17 eqtr4id φdistM=distK