Metamath Proof Explorer


Theorem sgmval

Description: The value of the divisor function. (Contributed by Mario Carneiro, 22-Sep-2014) (Revised by Mario Carneiro, 21-Jun-2015)

Ref Expression
Assertion sgmval ABAσB=kp|pBkA

Proof

Step Hyp Ref Expression
1 simpr x=An=Bn=B
2 1 breq2d x=An=BpnpB
3 2 rabbidv x=An=Bp|pn=p|pB
4 simpll x=An=Bkp|pnx=A
5 4 oveq2d x=An=Bkp|pnkx=kA
6 3 5 sumeq12dv x=An=Bkp|pnkx=kp|pBkA
7 df-sgm σ=x,nkp|pnkx
8 sumex kp|pBkAV
9 6 7 8 ovmpoa ABAσB=kp|pBkA