Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Signum (sgn or sign) function - misc. additions
sgnsgn
Next ⟩
sgnmulsgn
Metamath Proof Explorer
Ascii
Unicode
Theorem
sgnsgn
Description:
Signum is idempotent.
(Contributed by
Thierry Arnoux
, 2-Oct-2018)
Ref
Expression
Assertion
sgnsgn
⊢
A
∈
ℝ
*
→
sgn
⁡
sgn
⁡
A
=
sgn
⁡
A
Proof
Step
Hyp
Ref
Expression
1
id
⊢
A
∈
ℝ
*
→
A
∈
ℝ
*
2
fveq2
⊢
sgn
⁡
A
=
0
→
sgn
⁡
sgn
⁡
A
=
sgn
⁡
0
3
id
⊢
sgn
⁡
A
=
0
→
sgn
⁡
A
=
0
4
2
3
eqeq12d
⊢
sgn
⁡
A
=
0
→
sgn
⁡
sgn
⁡
A
=
sgn
⁡
A
↔
sgn
⁡
0
=
0
5
fveq2
⊢
sgn
⁡
A
=
1
→
sgn
⁡
sgn
⁡
A
=
sgn
⁡
1
6
id
⊢
sgn
⁡
A
=
1
→
sgn
⁡
A
=
1
7
5
6
eqeq12d
⊢
sgn
⁡
A
=
1
→
sgn
⁡
sgn
⁡
A
=
sgn
⁡
A
↔
sgn
⁡
1
=
1
8
fveq2
⊢
sgn
⁡
A
=
−
1
→
sgn
⁡
sgn
⁡
A
=
sgn
⁡
−
1
9
id
⊢
sgn
⁡
A
=
−
1
→
sgn
⁡
A
=
−
1
10
8
9
eqeq12d
⊢
sgn
⁡
A
=
−
1
→
sgn
⁡
sgn
⁡
A
=
sgn
⁡
A
↔
sgn
⁡
−
1
=
−
1
11
sgn0
⊢
sgn
⁡
0
=
0
12
11
a1i
⊢
A
∈
ℝ
*
∧
A
=
0
→
sgn
⁡
0
=
0
13
sgn1
⊢
sgn
⁡
1
=
1
14
13
a1i
⊢
A
∈
ℝ
*
∧
0
<
A
→
sgn
⁡
1
=
1
15
neg1rr
⊢
−
1
∈
ℝ
16
15
rexri
⊢
−
1
∈
ℝ
*
17
neg1lt0
⊢
−
1
<
0
18
sgnn
⊢
−
1
∈
ℝ
*
∧
−
1
<
0
→
sgn
⁡
−
1
=
−
1
19
16
17
18
mp2an
⊢
sgn
⁡
−
1
=
−
1
20
19
a1i
⊢
A
∈
ℝ
*
∧
A
<
0
→
sgn
⁡
−
1
=
−
1
21
1
4
7
10
12
14
20
sgn3da
⊢
A
∈
ℝ
*
→
sgn
⁡
sgn
⁡
A
=
sgn
⁡
A