Metamath Proof Explorer


Theorem sgsummulcl

Description: A finite semiring sum multiplied by a constant, analogous to gsummulc2 . (Contributed by AV, 23-Aug-2019)

Ref Expression
Hypotheses srgsummulcr.b B=BaseR
srgsummulcr.z 0˙=0R
srgsummulcr.p +˙=+R
srgsummulcr.t ·˙=R
srgsummulcr.r φRSRing
srgsummulcr.a φAV
srgsummulcr.y φYB
srgsummulcr.x φkAXB
srgsummulcr.n φfinSupp0˙kAX
Assertion sgsummulcl φRkAY·˙X=Y·˙RkAX

Proof

Step Hyp Ref Expression
1 srgsummulcr.b B=BaseR
2 srgsummulcr.z 0˙=0R
3 srgsummulcr.p +˙=+R
4 srgsummulcr.t ·˙=R
5 srgsummulcr.r φRSRing
6 srgsummulcr.a φAV
7 srgsummulcr.y φYB
8 srgsummulcr.x φkAXB
9 srgsummulcr.n φfinSupp0˙kAX
10 srgcmn RSRingRCMnd
11 5 10 syl φRCMnd
12 srgmnd RSRingRMnd
13 5 12 syl φRMnd
14 1 4 srglmhm RSRingYBxBY·˙xRMndHomR
15 5 7 14 syl2anc φxBY·˙xRMndHomR
16 oveq2 x=XY·˙x=Y·˙X
17 oveq2 x=RkAXY·˙x=Y·˙RkAX
18 1 2 11 13 6 15 8 9 16 17 gsummhm2 φRkAY·˙X=Y·˙RkAX