Metamath Proof Explorer


Theorem sibfmbl

Description: A simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Hypotheses sitgval.b B=BaseW
sitgval.j J=TopOpenW
sitgval.s S=𝛔J
sitgval.0 0˙=0W
sitgval.x ·˙=W
sitgval.h H=ℝHomScalarW
sitgval.1 φWV
sitgval.2 φMranmeasures
sibfmbl.1 φFMW
Assertion sibfmbl φFdomMMblFnμS

Proof

Step Hyp Ref Expression
1 sitgval.b B=BaseW
2 sitgval.j J=TopOpenW
3 sitgval.s S=𝛔J
4 sitgval.0 0˙=0W
5 sitgval.x ·˙=W
6 sitgval.h H=ℝHomScalarW
7 sitgval.1 φWV
8 sitgval.2 φMranmeasures
9 sibfmbl.1 φFMW
10 1 2 3 4 5 6 7 8 issibf φFMWFdomMMblFnμSranFFinxranF0˙MF-1x0+∞
11 9 10 mpbid φFdomMMblFnμSranFFinxranF0˙MF-1x0+∞
12 11 simp1d φFdomMMblFnμS