Metamath Proof Explorer
Description: A simple function is measurable. (Contributed by Thierry Arnoux, 19-Feb-2018)
|
|
Ref |
Expression |
|
Hypotheses |
sitgval.b |
|
|
|
sitgval.j |
|
|
|
sitgval.s |
|
|
|
sitgval.0 |
|
|
|
sitgval.x |
|
|
|
sitgval.h |
|
|
|
sitgval.1 |
|
|
|
sitgval.2 |
|
|
|
sibfmbl.1 |
|
|
Assertion |
sibfmbl |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
|
2 |
|
sitgval.j |
|
3 |
|
sitgval.s |
|
4 |
|
sitgval.0 |
|
5 |
|
sitgval.x |
|
6 |
|
sitgval.h |
|
7 |
|
sitgval.1 |
|
8 |
|
sitgval.2 |
|
9 |
|
sibfmbl.1 |
|
10 |
1 2 3 4 5 6 7 8
|
issibf |
|
11 |
9 10
|
mpbid |
|
12 |
11
|
simp1d |
|