Metamath Proof Explorer


Theorem sigagenss2

Description: Sufficient condition for inclusion of sigma-algebras. This is used to prove equality of sigma-algebras. (Contributed by Thierry Arnoux, 10-Oct-2017)

Ref Expression
Assertion sigagenss2 A=BA𝛔BBV𝛔A𝛔B

Proof

Step Hyp Ref Expression
1 sigagensiga BV𝛔BsigAlgebraB
2 1 3ad2ant3 A=BA𝛔BBV𝛔BsigAlgebraB
3 simp1 A=BA𝛔BBVA=B
4 3 fveq2d A=BA𝛔BBVsigAlgebraA=sigAlgebraB
5 2 4 eleqtrrd A=BA𝛔BBV𝛔BsigAlgebraA
6 simp2 A=BA𝛔BBVA𝛔B
7 sigagenss 𝛔BsigAlgebraAA𝛔B𝛔A𝛔B
8 5 6 7 syl2anc A=BA𝛔BBV𝛔A𝛔B