Metamath Proof Explorer


Theorem signsw0g

Description: The neutral element of W . (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses signsw.p ˙=a101,b101ifb=0ab
signsw.w W=Basendx101+ndx˙
Assertion signsw0g 0=0W

Proof

Step Hyp Ref Expression
1 signsw.p ˙=a101,b101ifb=0ab
2 signsw.w W=Basendx101+ndx˙
3 c0ex 0V
4 3 tpid2 0101
5 1 signsw0glem u1010˙u=uu˙0=u
6 4 5 pm3.2i 0101u1010˙u=uu˙0=u
7 1 2 signswbase 101=BaseW
8 eqid 0W=0W
9 1 2 signswplusg ˙=+W
10 oveq1 e=0e˙u=0˙u
11 10 eqeq1d e=0e˙u=u0˙u=u
12 11 ovanraleqv e=0u101e˙u=uu˙e=uu1010˙u=uu˙0=u
13 12 rspcev 0101u1010˙u=uu˙0=ue101u101e˙u=uu˙e=u
14 4 5 13 mp2an e101u101e˙u=uu˙e=u
15 14 a1i e101u101e˙u=uu˙e=u
16 7 8 9 15 ismgmid 0101u1010˙u=uu˙0=u0W=0
17 16 mptru 0101u1010˙u=uu˙0=u0W=0
18 6 17 mpbi 0W=0
19 18 eqcomi 0=0W