Metamath Proof Explorer


Theorem signsw0g

Description: The neutral element of W . (Contributed by Thierry Arnoux, 9-Sep-2018)

Ref Expression
Hypotheses signsw.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
signsw.w W = Base ndx 1 0 1 + ndx ˙
Assertion signsw0g 0 = 0 W

Proof

Step Hyp Ref Expression
1 signsw.p ˙ = a 1 0 1 , b 1 0 1 if b = 0 a b
2 signsw.w W = Base ndx 1 0 1 + ndx ˙
3 c0ex 0 V
4 3 tpid2 0 1 0 1
5 1 signsw0glem u 1 0 1 0 ˙ u = u u ˙ 0 = u
6 4 5 pm3.2i 0 1 0 1 u 1 0 1 0 ˙ u = u u ˙ 0 = u
7 1 2 signswbase 1 0 1 = Base W
8 eqid 0 W = 0 W
9 1 2 signswplusg ˙ = + W
10 oveq1 e = 0 e ˙ u = 0 ˙ u
11 10 eqeq1d e = 0 e ˙ u = u 0 ˙ u = u
12 11 ovanraleqv e = 0 u 1 0 1 e ˙ u = u u ˙ e = u u 1 0 1 0 ˙ u = u u ˙ 0 = u
13 12 rspcev 0 1 0 1 u 1 0 1 0 ˙ u = u u ˙ 0 = u e 1 0 1 u 1 0 1 e ˙ u = u u ˙ e = u
14 4 5 13 mp2an e 1 0 1 u 1 0 1 e ˙ u = u u ˙ e = u
15 14 a1i e 1 0 1 u 1 0 1 e ˙ u = u u ˙ e = u
16 7 8 9 15 ismgmid 0 1 0 1 u 1 0 1 0 ˙ u = u u ˙ 0 = u 0 W = 0
17 16 mptru 0 1 0 1 u 1 0 1 0 ˙ u = u u ˙ 0 = u 0 W = 0
18 6 17 mpbi 0 W = 0
19 18 eqcomi 0 = 0 W