Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Descartes's rule of signs
Sign changes in a word over real numbers
signsw0glem
Next ⟩
signswbase
Metamath Proof Explorer
Ascii
Unicode
Theorem
signsw0glem
Description:
Neutral element property of
.+^
.
(Contributed by
Thierry Arnoux
, 9-Sep-2018)
Ref
Expression
Hypothesis
signsw.p
⊢
⨣
˙
=
a
∈
−
1
0
1
,
b
∈
−
1
0
1
⟼
if
b
=
0
a
b
Assertion
signsw0glem
⊢
∀
u
∈
−
1
0
1
0
⨣
˙
u
=
u
∧
u
⨣
˙
0
=
u
Proof
Step
Hyp
Ref
Expression
1
signsw.p
⊢
⨣
˙
=
a
∈
−
1
0
1
,
b
∈
−
1
0
1
⟼
if
b
=
0
a
b
2
c0ex
⊢
0
∈
V
3
2
tpid2
⊢
0
∈
−
1
0
1
4
1
signspval
⊢
0
∈
−
1
0
1
∧
u
∈
−
1
0
1
→
0
⨣
˙
u
=
if
u
=
0
0
u
5
3
4
mpan
⊢
u
∈
−
1
0
1
→
0
⨣
˙
u
=
if
u
=
0
0
u
6
iftrue
⊢
u
=
0
→
if
u
=
0
0
u
=
0
7
id
⊢
u
=
0
→
u
=
0
8
6
7
eqtr4d
⊢
u
=
0
→
if
u
=
0
0
u
=
u
9
iffalse
⊢
¬
u
=
0
→
if
u
=
0
0
u
=
u
10
8
9
pm2.61i
⊢
if
u
=
0
0
u
=
u
11
5
10
eqtrdi
⊢
u
∈
−
1
0
1
→
0
⨣
˙
u
=
u
12
1
signspval
⊢
u
∈
−
1
0
1
∧
0
∈
−
1
0
1
→
u
⨣
˙
0
=
if
0
=
0
u
0
13
3
12
mpan2
⊢
u
∈
−
1
0
1
→
u
⨣
˙
0
=
if
0
=
0
u
0
14
eqid
⊢
0
=
0
15
14
iftruei
⊢
if
0
=
0
u
0
=
u
16
13
15
eqtrdi
⊢
u
∈
−
1
0
1
→
u
⨣
˙
0
=
u
17
11
16
jca
⊢
u
∈
−
1
0
1
→
0
⨣
˙
u
=
u
∧
u
⨣
˙
0
=
u
18
17
rgen
⊢
∀
u
∈
−
1
0
1
0
⨣
˙
u
=
u
∧
u
⨣
˙
0
=
u