Metamath Proof Explorer


Theorem simpcntrab

Description: The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024)

Ref Expression
Hypotheses simpcntrab.a B = Base G
simpcntrab.b 0 ˙ = 0 G
simpcntrab.c Z = Cntr G
simpcntrab.d φ G SimpGrp
Assertion simpcntrab φ Z = 0 ˙ G Abel

Proof

Step Hyp Ref Expression
1 simpcntrab.a B = Base G
2 simpcntrab.b 0 ˙ = 0 G
3 simpcntrab.c Z = Cntr G
4 simpcntrab.d φ G SimpGrp
5 4 simpggrpd φ G Grp
6 3 cntrnsg G Grp Z NrmSGrp G
7 5 6 syl φ Z NrmSGrp G
8 1 2 4 7 simpgnsgeqd φ Z = 0 ˙ Z = B
9 8 ancli φ φ Z = 0 ˙ Z = B
10 andi φ Z = 0 ˙ Z = B φ Z = 0 ˙ φ Z = B
11 10 biimpi φ Z = 0 ˙ Z = B φ Z = 0 ˙ φ Z = B
12 simpr φ Z = 0 ˙ Z = 0 ˙
13 12 orim1i φ Z = 0 ˙ φ Z = B Z = 0 ˙ φ Z = B
14 9 11 13 3syl φ Z = 0 ˙ φ Z = B
15 oveq2 Z = B G 𝑠 Z = G 𝑠 B
16 3 oveq2i G 𝑠 Z = G 𝑠 Cntr G
17 15 16 eqtr3di Z = B G 𝑠 B = G 𝑠 Cntr G
18 17 adantl φ Z = B G 𝑠 B = G 𝑠 Cntr G
19 1 ressid G Grp G 𝑠 B = G
20 5 19 syl φ G 𝑠 B = G
21 20 adantr φ Z = B G 𝑠 B = G
22 18 21 eqtr3d φ Z = B G 𝑠 Cntr G = G
23 eqid G 𝑠 Cntr G = G 𝑠 Cntr G
24 23 cntrabl G Grp G 𝑠 Cntr G Abel
25 5 24 syl φ G 𝑠 Cntr G Abel
26 25 adantr φ Z = B G 𝑠 Cntr G Abel
27 22 26 eqeltrrd φ Z = B G Abel
28 27 orim2i Z = 0 ˙ φ Z = B Z = 0 ˙ G Abel
29 14 28 syl φ Z = 0 ˙ G Abel