Step |
Hyp |
Ref |
Expression |
1 |
|
simpcntrab.a |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
2 |
|
simpcntrab.b |
⊢ 0 = ( 0g ‘ 𝐺 ) |
3 |
|
simpcntrab.c |
⊢ 𝑍 = ( Cntr ‘ 𝐺 ) |
4 |
|
simpcntrab.d |
⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) |
5 |
4
|
simpggrpd |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
6 |
3
|
cntrnsg |
⊢ ( 𝐺 ∈ Grp → 𝑍 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
8 |
1 2 4 7
|
simpgnsgeqd |
⊢ ( 𝜑 → ( 𝑍 = { 0 } ∨ 𝑍 = 𝐵 ) ) |
9 |
8
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ ( 𝑍 = { 0 } ∨ 𝑍 = 𝐵 ) ) ) |
10 |
|
andi |
⊢ ( ( 𝜑 ∧ ( 𝑍 = { 0 } ∨ 𝑍 = 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑍 = { 0 } ) ∨ ( 𝜑 ∧ 𝑍 = 𝐵 ) ) ) |
11 |
10
|
biimpi |
⊢ ( ( 𝜑 ∧ ( 𝑍 = { 0 } ∨ 𝑍 = 𝐵 ) ) → ( ( 𝜑 ∧ 𝑍 = { 0 } ) ∨ ( 𝜑 ∧ 𝑍 = 𝐵 ) ) ) |
12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑍 = { 0 } ) → 𝑍 = { 0 } ) |
13 |
12
|
orim1i |
⊢ ( ( ( 𝜑 ∧ 𝑍 = { 0 } ) ∨ ( 𝜑 ∧ 𝑍 = 𝐵 ) ) → ( 𝑍 = { 0 } ∨ ( 𝜑 ∧ 𝑍 = 𝐵 ) ) ) |
14 |
9 11 13
|
3syl |
⊢ ( 𝜑 → ( 𝑍 = { 0 } ∨ ( 𝜑 ∧ 𝑍 = 𝐵 ) ) ) |
15 |
|
oveq2 |
⊢ ( 𝑍 = 𝐵 → ( 𝐺 ↾s 𝑍 ) = ( 𝐺 ↾s 𝐵 ) ) |
16 |
3
|
oveq2i |
⊢ ( 𝐺 ↾s 𝑍 ) = ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) |
17 |
15 16
|
eqtr3di |
⊢ ( 𝑍 = 𝐵 → ( 𝐺 ↾s 𝐵 ) = ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑍 = 𝐵 ) → ( 𝐺 ↾s 𝐵 ) = ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) ) |
19 |
1
|
ressid |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ↾s 𝐵 ) = 𝐺 ) |
20 |
5 19
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↾s 𝐵 ) = 𝐺 ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 𝐵 ) → ( 𝐺 ↾s 𝐵 ) = 𝐺 ) |
22 |
18 21
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑍 = 𝐵 ) → ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) = 𝐺 ) |
23 |
|
eqid |
⊢ ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) = ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) |
24 |
23
|
cntrabl |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) ∈ Abel ) |
25 |
5 24
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) ∈ Abel ) |
26 |
25
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 𝐵 ) → ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) ∈ Abel ) |
27 |
22 26
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑍 = 𝐵 ) → 𝐺 ∈ Abel ) |
28 |
27
|
orim2i |
⊢ ( ( 𝑍 = { 0 } ∨ ( 𝜑 ∧ 𝑍 = 𝐵 ) ) → ( 𝑍 = { 0 } ∨ 𝐺 ∈ Abel ) ) |
29 |
14 28
|
syl |
⊢ ( 𝜑 → ( 𝑍 = { 0 } ∨ 𝐺 ∈ Abel ) ) |