| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpcntrab.a | ⊢ 𝐵  =  ( Base ‘ 𝐺 ) | 
						
							| 2 |  | simpcntrab.b | ⊢  0   =  ( 0g ‘ 𝐺 ) | 
						
							| 3 |  | simpcntrab.c | ⊢ 𝑍  =  ( Cntr ‘ 𝐺 ) | 
						
							| 4 |  | simpcntrab.d | ⊢ ( 𝜑  →  𝐺  ∈  SimpGrp ) | 
						
							| 5 | 4 | simpggrpd | ⊢ ( 𝜑  →  𝐺  ∈  Grp ) | 
						
							| 6 | 3 | cntrnsg | ⊢ ( 𝐺  ∈  Grp  →  𝑍  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 7 | 5 6 | syl | ⊢ ( 𝜑  →  𝑍  ∈  ( NrmSGrp ‘ 𝐺 ) ) | 
						
							| 8 | 1 2 4 7 | simpgnsgeqd | ⊢ ( 𝜑  →  ( 𝑍  =  {  0  }  ∨  𝑍  =  𝐵 ) ) | 
						
							| 9 | 8 | ancli | ⊢ ( 𝜑  →  ( 𝜑  ∧  ( 𝑍  =  {  0  }  ∨  𝑍  =  𝐵 ) ) ) | 
						
							| 10 |  | andi | ⊢ ( ( 𝜑  ∧  ( 𝑍  =  {  0  }  ∨  𝑍  =  𝐵 ) )  ↔  ( ( 𝜑  ∧  𝑍  =  {  0  } )  ∨  ( 𝜑  ∧  𝑍  =  𝐵 ) ) ) | 
						
							| 11 | 10 | biimpi | ⊢ ( ( 𝜑  ∧  ( 𝑍  =  {  0  }  ∨  𝑍  =  𝐵 ) )  →  ( ( 𝜑  ∧  𝑍  =  {  0  } )  ∨  ( 𝜑  ∧  𝑍  =  𝐵 ) ) ) | 
						
							| 12 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑍  =  {  0  } )  →  𝑍  =  {  0  } ) | 
						
							| 13 | 12 | orim1i | ⊢ ( ( ( 𝜑  ∧  𝑍  =  {  0  } )  ∨  ( 𝜑  ∧  𝑍  =  𝐵 ) )  →  ( 𝑍  =  {  0  }  ∨  ( 𝜑  ∧  𝑍  =  𝐵 ) ) ) | 
						
							| 14 |  | oveq2 | ⊢ ( 𝑍  =  𝐵  →  ( 𝐺  ↾s  𝑍 )  =  ( 𝐺  ↾s  𝐵 ) ) | 
						
							| 15 | 3 | oveq2i | ⊢ ( 𝐺  ↾s  𝑍 )  =  ( 𝐺  ↾s  ( Cntr ‘ 𝐺 ) ) | 
						
							| 16 | 14 15 | eqtr3di | ⊢ ( 𝑍  =  𝐵  →  ( 𝐺  ↾s  𝐵 )  =  ( 𝐺  ↾s  ( Cntr ‘ 𝐺 ) ) ) | 
						
							| 17 | 16 | adantl | ⊢ ( ( 𝜑  ∧  𝑍  =  𝐵 )  →  ( 𝐺  ↾s  𝐵 )  =  ( 𝐺  ↾s  ( Cntr ‘ 𝐺 ) ) ) | 
						
							| 18 | 1 | ressid | ⊢ ( 𝐺  ∈  Grp  →  ( 𝐺  ↾s  𝐵 )  =  𝐺 ) | 
						
							| 19 | 5 18 | syl | ⊢ ( 𝜑  →  ( 𝐺  ↾s  𝐵 )  =  𝐺 ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑍  =  𝐵 )  →  ( 𝐺  ↾s  𝐵 )  =  𝐺 ) | 
						
							| 21 | 17 20 | eqtr3d | ⊢ ( ( 𝜑  ∧  𝑍  =  𝐵 )  →  ( 𝐺  ↾s  ( Cntr ‘ 𝐺 ) )  =  𝐺 ) | 
						
							| 22 |  | eqid | ⊢ ( 𝐺  ↾s  ( Cntr ‘ 𝐺 ) )  =  ( 𝐺  ↾s  ( Cntr ‘ 𝐺 ) ) | 
						
							| 23 | 22 | cntrabl | ⊢ ( 𝐺  ∈  Grp  →  ( 𝐺  ↾s  ( Cntr ‘ 𝐺 ) )  ∈  Abel ) | 
						
							| 24 | 5 23 | syl | ⊢ ( 𝜑  →  ( 𝐺  ↾s  ( Cntr ‘ 𝐺 ) )  ∈  Abel ) | 
						
							| 25 | 24 | adantr | ⊢ ( ( 𝜑  ∧  𝑍  =  𝐵 )  →  ( 𝐺  ↾s  ( Cntr ‘ 𝐺 ) )  ∈  Abel ) | 
						
							| 26 | 21 25 | eqeltrrd | ⊢ ( ( 𝜑  ∧  𝑍  =  𝐵 )  →  𝐺  ∈  Abel ) | 
						
							| 27 | 26 | orim2i | ⊢ ( ( 𝑍  =  {  0  }  ∨  ( 𝜑  ∧  𝑍  =  𝐵 ) )  →  ( 𝑍  =  {  0  }  ∨  𝐺  ∈  Abel ) ) | 
						
							| 28 | 9 11 13 27 | 4syl | ⊢ ( 𝜑  →  ( 𝑍  =  {  0  }  ∨  𝐺  ∈  Abel ) ) |