Metamath Proof Explorer


Theorem simpcntrab

Description: The center of a simple group is trivial or the group is abelian. (Contributed by SS, 3-Jan-2024)

Ref Expression
Hypotheses simpcntrab.a 𝐵 = ( Base ‘ 𝐺 )
simpcntrab.b 0 = ( 0g𝐺 )
simpcntrab.c 𝑍 = ( Cntr ‘ 𝐺 )
simpcntrab.d ( 𝜑𝐺 ∈ SimpGrp )
Assertion simpcntrab ( 𝜑 → ( 𝑍 = { 0 } ∨ 𝐺 ∈ Abel ) )

Proof

Step Hyp Ref Expression
1 simpcntrab.a 𝐵 = ( Base ‘ 𝐺 )
2 simpcntrab.b 0 = ( 0g𝐺 )
3 simpcntrab.c 𝑍 = ( Cntr ‘ 𝐺 )
4 simpcntrab.d ( 𝜑𝐺 ∈ SimpGrp )
5 4 simpggrpd ( 𝜑𝐺 ∈ Grp )
6 3 cntrnsg ( 𝐺 ∈ Grp → 𝑍 ∈ ( NrmSGrp ‘ 𝐺 ) )
7 5 6 syl ( 𝜑𝑍 ∈ ( NrmSGrp ‘ 𝐺 ) )
8 1 2 4 7 simpgnsgeqd ( 𝜑 → ( 𝑍 = { 0 } ∨ 𝑍 = 𝐵 ) )
9 8 ancli ( 𝜑 → ( 𝜑 ∧ ( 𝑍 = { 0 } ∨ 𝑍 = 𝐵 ) ) )
10 andi ( ( 𝜑 ∧ ( 𝑍 = { 0 } ∨ 𝑍 = 𝐵 ) ) ↔ ( ( 𝜑𝑍 = { 0 } ) ∨ ( 𝜑𝑍 = 𝐵 ) ) )
11 10 biimpi ( ( 𝜑 ∧ ( 𝑍 = { 0 } ∨ 𝑍 = 𝐵 ) ) → ( ( 𝜑𝑍 = { 0 } ) ∨ ( 𝜑𝑍 = 𝐵 ) ) )
12 simpr ( ( 𝜑𝑍 = { 0 } ) → 𝑍 = { 0 } )
13 12 orim1i ( ( ( 𝜑𝑍 = { 0 } ) ∨ ( 𝜑𝑍 = 𝐵 ) ) → ( 𝑍 = { 0 } ∨ ( 𝜑𝑍 = 𝐵 ) ) )
14 oveq2 ( 𝑍 = 𝐵 → ( 𝐺s 𝑍 ) = ( 𝐺s 𝐵 ) )
15 3 oveq2i ( 𝐺s 𝑍 ) = ( 𝐺s ( Cntr ‘ 𝐺 ) )
16 14 15 eqtr3di ( 𝑍 = 𝐵 → ( 𝐺s 𝐵 ) = ( 𝐺s ( Cntr ‘ 𝐺 ) ) )
17 16 adantl ( ( 𝜑𝑍 = 𝐵 ) → ( 𝐺s 𝐵 ) = ( 𝐺s ( Cntr ‘ 𝐺 ) ) )
18 1 ressid ( 𝐺 ∈ Grp → ( 𝐺s 𝐵 ) = 𝐺 )
19 5 18 syl ( 𝜑 → ( 𝐺s 𝐵 ) = 𝐺 )
20 19 adantr ( ( 𝜑𝑍 = 𝐵 ) → ( 𝐺s 𝐵 ) = 𝐺 )
21 17 20 eqtr3d ( ( 𝜑𝑍 = 𝐵 ) → ( 𝐺s ( Cntr ‘ 𝐺 ) ) = 𝐺 )
22 eqid ( 𝐺s ( Cntr ‘ 𝐺 ) ) = ( 𝐺s ( Cntr ‘ 𝐺 ) )
23 22 cntrabl ( 𝐺 ∈ Grp → ( 𝐺s ( Cntr ‘ 𝐺 ) ) ∈ Abel )
24 5 23 syl ( 𝜑 → ( 𝐺s ( Cntr ‘ 𝐺 ) ) ∈ Abel )
25 24 adantr ( ( 𝜑𝑍 = 𝐵 ) → ( 𝐺s ( Cntr ‘ 𝐺 ) ) ∈ Abel )
26 21 25 eqeltrrd ( ( 𝜑𝑍 = 𝐵 ) → 𝐺 ∈ Abel )
27 26 orim2i ( ( 𝑍 = { 0 } ∨ ( 𝜑𝑍 = 𝐵 ) ) → ( 𝑍 = { 0 } ∨ 𝐺 ∈ Abel ) )
28 9 11 13 27 4syl ( 𝜑 → ( 𝑍 = { 0 } ∨ 𝐺 ∈ Abel ) )