| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpcntrab.a |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
simpcntrab.b |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
simpcntrab.c |
⊢ 𝑍 = ( Cntr ‘ 𝐺 ) |
| 4 |
|
simpcntrab.d |
⊢ ( 𝜑 → 𝐺 ∈ SimpGrp ) |
| 5 |
4
|
simpggrpd |
⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 6 |
3
|
cntrnsg |
⊢ ( 𝐺 ∈ Grp → 𝑍 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 7 |
5 6
|
syl |
⊢ ( 𝜑 → 𝑍 ∈ ( NrmSGrp ‘ 𝐺 ) ) |
| 8 |
1 2 4 7
|
simpgnsgeqd |
⊢ ( 𝜑 → ( 𝑍 = { 0 } ∨ 𝑍 = 𝐵 ) ) |
| 9 |
8
|
ancli |
⊢ ( 𝜑 → ( 𝜑 ∧ ( 𝑍 = { 0 } ∨ 𝑍 = 𝐵 ) ) ) |
| 10 |
|
andi |
⊢ ( ( 𝜑 ∧ ( 𝑍 = { 0 } ∨ 𝑍 = 𝐵 ) ) ↔ ( ( 𝜑 ∧ 𝑍 = { 0 } ) ∨ ( 𝜑 ∧ 𝑍 = 𝐵 ) ) ) |
| 11 |
10
|
biimpi |
⊢ ( ( 𝜑 ∧ ( 𝑍 = { 0 } ∨ 𝑍 = 𝐵 ) ) → ( ( 𝜑 ∧ 𝑍 = { 0 } ) ∨ ( 𝜑 ∧ 𝑍 = 𝐵 ) ) ) |
| 12 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑍 = { 0 } ) → 𝑍 = { 0 } ) |
| 13 |
12
|
orim1i |
⊢ ( ( ( 𝜑 ∧ 𝑍 = { 0 } ) ∨ ( 𝜑 ∧ 𝑍 = 𝐵 ) ) → ( 𝑍 = { 0 } ∨ ( 𝜑 ∧ 𝑍 = 𝐵 ) ) ) |
| 14 |
|
oveq2 |
⊢ ( 𝑍 = 𝐵 → ( 𝐺 ↾s 𝑍 ) = ( 𝐺 ↾s 𝐵 ) ) |
| 15 |
3
|
oveq2i |
⊢ ( 𝐺 ↾s 𝑍 ) = ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) |
| 16 |
14 15
|
eqtr3di |
⊢ ( 𝑍 = 𝐵 → ( 𝐺 ↾s 𝐵 ) = ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) ) |
| 17 |
16
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑍 = 𝐵 ) → ( 𝐺 ↾s 𝐵 ) = ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) ) |
| 18 |
1
|
ressid |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ↾s 𝐵 ) = 𝐺 ) |
| 19 |
5 18
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↾s 𝐵 ) = 𝐺 ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 𝐵 ) → ( 𝐺 ↾s 𝐵 ) = 𝐺 ) |
| 21 |
17 20
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑍 = 𝐵 ) → ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) = 𝐺 ) |
| 22 |
|
eqid |
⊢ ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) = ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) |
| 23 |
22
|
cntrabl |
⊢ ( 𝐺 ∈ Grp → ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) ∈ Abel ) |
| 24 |
5 23
|
syl |
⊢ ( 𝜑 → ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) ∈ Abel ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑍 = 𝐵 ) → ( 𝐺 ↾s ( Cntr ‘ 𝐺 ) ) ∈ Abel ) |
| 26 |
21 25
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑍 = 𝐵 ) → 𝐺 ∈ Abel ) |
| 27 |
26
|
orim2i |
⊢ ( ( 𝑍 = { 0 } ∨ ( 𝜑 ∧ 𝑍 = 𝐵 ) ) → ( 𝑍 = { 0 } ∨ 𝐺 ∈ Abel ) ) |
| 28 |
9 11 13 27
|
4syl |
⊢ ( 𝜑 → ( 𝑍 = { 0 } ∨ 𝐺 ∈ Abel ) ) |